Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-27T10:30:39.888Z Has data issue: false hasContentIssue false

An ultrastructural study of Malpighian tubules of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae): Cell types and structural zonation

Published online by Cambridge University Press:  19 September 2011

Jedida Kongoro
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
Thomas R. Odhiambo
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
James R. Mainoya
Affiliation:
Department of Zoology, University of Dar es Salaam, P. O. Box 35091, Dar es Salaam, Tanzania
Get access

Abstract

The stable fly, Stomoxys calcitrans L., has two pairs of Malpighian tubules. Ultrastructurally, the tubules consist of three morphologically distinct zones: the distal, intermediate and proximal regions, which themselves are characterized by distinct cell types. The tubule cells have numerous mitochondria, microvilli and basal infoldings, which are associated with mitochondria. It is suggested that the distal and intermediate regions are secretory, while the proximal region is reabsorptive; and that the haemotophagous habit in S. calcitrans is probably correlated with the ultrastructure of its Malpighian tubules.

Résumé

La mouche d'estable, Stomoxys calcitrans L., posside deux poires de tubes de Malpighi. L'ultrastructure montre que les tubes ont 3 zones morphologiquement differents; la region-distale, l'intermediaire et la proximale. Les zones sont characterisees par de types de cellules differentes. Les cellules des tubes out des nombreuses mitochondries, des microvilli et des plis basaux qui sont associes aux mitochondries. Il a ete demontre que la region distale et la region intermediare ont un role de secretion, et que la proximale joue un role de reabsorption. L'latitude hematophage de S. calcitrans est probablement corretee avec l'ultrastructure de ses tubes de Malpighi.

Type
Part I: Symposium on Integrated Pest Management and Environmental Conservation: Insect Physiology
Copyright
Copyright © ICIPE 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berridge, M. J. (1966) Metabolic pathways of isolated Malpighian tubules of the blowfly functioning in an artificial medium. J. Insect Physiol. 12, 15231538.CrossRefGoogle Scholar
Berridge, M. J. and Oschman, J. L. (1969) A structural basis for fluid secretion by the Malpighian tubules. Tissue & Cell 1, 247272.CrossRefGoogle ScholarPubMed
Berridge, M. J. and Oschman, J. L. (1972) Transporting Epithelia. Academic Press, London.CrossRefGoogle Scholar
Bulger, R. E. (1983) The urinary system. In Histology, Cell and Tissue Biology (Edited by Weiss, L.), pp. 869913. Elsevier Biomedical, Amsterdam.CrossRefGoogle Scholar
Cochran, D. G. (1985) Excretory systems. In Fundamentals of Insect Physiology (Edited by Blum, M. S.), pp. 5989. John Wiley & Sons, New York.Google Scholar
Dow, J. A. T. (1986) Insect midgut function. Adv. Insect Physiol. 19, 187328.CrossRefGoogle Scholar
Eichelberg, D. and Wessing, A. (1975) Morphology of the Malpighian tubules of insects. Fortschr. Zool. 23, 124147.Google Scholar
Fawcett, D. (1981) The Cell. Saunders, Philadelphia.Google Scholar
Gee, J. D. (1974) Mechanism and control of diuresis in the tsetse fly, Glossina austeni. Ph.D. thesis, University of Cambridge.CrossRefGoogle Scholar
Gee, J. D. (1975) Diuresis in the tsetse fly, Glossina austeni. J. exp. Biol. 63, 381–190.CrossRefGoogle ScholarPubMed
Glauert, A. M. (1975) Fixation, dehydration and embedding of biological specimens. In Practical Methods in Electron Microscopy (Edited by Glauert, A. M.). North-Holland, London.Google Scholar
Gooding, R. H. (1972) Digestive processes of haematophagous insects. I. Literature review. Quaest entomol. 8, 560.Google Scholar
Green, L. F. B. (1979) Regional specialization in the Malpighian tubules of the New Zealand glow-worm, Arachnocampa luminosa (Diptera: Mycetophilidae) The structure and function of type I and II cells. Tissue & Cell 11, 673702.CrossRefGoogle ScholarPubMed
Kongoro, J. A. and Odhiambo, T. R. (1989) Functional ultrastructure of Malpighian tubules of tsetse, Glossina morsitans morsitans (Diptera: Glossinidae). Insect Sci. Applic. 9, 563571.Google Scholar
Maddrell, S. H. P. (1978) Physiological discontinuity in an epithelium with an apparently uniform structure. J. exp. Biol. 75, 133145.CrossRefGoogle Scholar
Maddrell, S. H. P. (1980) The control of water relations in insects. In Insect Biology in the Future ‘VBW 80’ (Edited by Locke, M. and Smith, D. S.), pp. 179199. Academic Press, London.CrossRefGoogle Scholar
Maddrell, S. H. P. and Philips, J. E. (1975) Secretion of hypo-osmotic fluid by the lower Malpighian tubules of Rhodnius prolixus. J. exp. Biol. 62, 671683.CrossRefGoogle Scholar
Martoja, R. and Ballan-Dufrancais, C. (1984) The ultrastructure of the digestive and excretory organs. In Insect Ultrastructure (Edited by King, R. C. and Akai, H.), pp. 199268. Plenum Press, London.CrossRefGoogle Scholar
McFarlane, J. E. (1985) Nutrition and digestive organs. In Fundamentals of Insect Physiology (Edited by Blum, M. S.). pp. 5989. John Wiley & Sons, New York.Google Scholar
Ogonji, F. A. (1983) Mechanical transmission of Trypanosoma evansi Steel by Stomoxys calcitrans. M.Sc. thesis., University of Nairobi.Google Scholar
Phillips, J. E., Hanrahan, J., Chamberlin, M. and Thomson, B. (1986) Mechanisms and control of reabsorption in insect hindgut. Adv. Insect. Physiol. 19, 329422.CrossRefGoogle Scholar
Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 202212.CrossRefGoogle ScholarPubMed
Service, M. W. (1980) A Guide to Medical Entomology. MacMillan, London.CrossRefGoogle Scholar
Service, M. W. (1986) Lecture Notes on Medical Entomology. Blackwell Scientific Publications, Oxford.Google Scholar
Smith, D. S. (1968) Insect Cells: Their Structure and Function. Oliver and Boyd, Edinburgh.Google Scholar
Smith, D. S. and Littau, V. C. (1960) Cellular specialization in the excretory epithelia of an insect, Macrosteles fascifrons Stal (Homoptera). J. Biophysics Biochem. Cytol. 8, 103133.CrossRefGoogle ScholarPubMed
Sohal, R. S. (1974) Fine structure of the Malpighian tubules in the housefly Musca domestica. Tissue & Cell. 6, 719728.CrossRefGoogle ScholarPubMed
Wall, B. J., Oschman, J. L. and Schmidt, B. A. (1975) Morphology and function of Malpighian tubules and associated structures in the cockroach Periplaneta americana. J. Morphol. 146, 265306.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. (1931a) The physiology of excretion in a blood sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae) II: Anatomy and histology of excretory systems. J. exp. Biol. 8, 428–42.CrossRefGoogle Scholar
Wigglesworth, V. B. (1931b) The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae) III: The mechanism of uric acid excretion. J. exp. Biol. 8, 443451.CrossRefGoogle Scholar
Wigglesworth, V. B. and Salpeter, M. M. (1962) Histology of the Malpighian tubules in Rhodnius prolixus Stal (Hemiptera). J. Insect Physiol. 8, 299307.CrossRefGoogle Scholar