Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-30T09:05:06.566Z Has data issue: false hasContentIssue false

Field evaluation of four synthetic pyrethroids for their termiticidal efficacy

Published online by Cambridge University Press:  08 April 2017

R. Prasad
Affiliation:
Entomology Division, Defence Research and Development Establishment, Tansen Road, Gwalior-474 002 (M.P.), India
K. M. Rao
Affiliation:
Entomology Division, Defence Research and Development Establishment, Tansen Road, Gwalior-474 002 (M.P.), India
Get access

Abstract

Permethrin, deltamethrin, fenvalerate and cypermethrin were evaluated for their termiticidal efficacy in a graveyard test. Semul wood, Salmalia malabaricum veneers (size 15.00 × 6.00 × 0.06 cm) were impregnated with concentrations of 0.25, 0.50 and 0.75% aqueous solution of these chemicals. Fenvalerate provided 100% protection for 44 months at all three concentrations. Cypermethrin provided 100% protection at 0.50 and 0.75% concentrations, while permethrin and deltamethrin provided 100% protection at 0.75% concentration for 7 and 10 months, respectively.

Résumé

Le perméthrine, le deltaméthrine, le fenvalerate, et le cyperméthrine ont été évalués pour leur efficacité termiticide pour tester le bois de coffrage. Des placages du bois de semul, Salmalia malabaricum (dimensions 15,00 × 6,00 × 0,06 cm) ont été imprégnés de solutions aqueuses de ces produits chimiques aux concentrations de 0,25, 0,50 et 0,75%. Le fenvalerate a donné une protection de 100% pendant 44 mois pour toutes les concentrations. Le cyperméthrine a donné 100% de protection à 0,50 et 0,75%; le perméthrine et le deltaméthrine ont donné une protection de 100% à la concentration de 0,75% pour 7 et 10 mois respectivement.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, Ausat, Cheema, P. S., Koshi, T., Perti, S. L. and Ranganathan, S. K. (1960) Natural resistance of different species of timbers to termite attack. In Proc. Symp. on Termites in the Humid Tropics. UNESCO and Zoological Survey of India, 199 pp.Google Scholar
Anonymous (1992) The Gazette of India (Extraodinary) No. 124, February 1992, 177, 13.Google Scholar
Hirai, Y. and Katsumaro, T. (1991) Levels of chlordane, oxychlordane and nonachlor in human adipose tissues. Bull. Environ. Contam. Toxicol. 47, 173176.CrossRefGoogle ScholarPubMed
International Organisation for Standardisation (ISO) (1977) No. 3998. Textiles-determination of resistance to certain insect pests. Ref. No. ISO 3999–1977 (E).Google Scholar
Kamble, S. T., Ogg, C. L., Gold, R. E. and Vance, A. D. (1992) Exposure of applicators and residents to chlordane and heptachlor when used for subterranean termite control. Arch. Environ. Contam. Toxicol. 22, 253259.CrossRefGoogle ScholarPubMed
Kenneth, G. J., Yates, J. R., Minoru, T. and Yamamoto, R. T. (1993) Persistence of organochlorine insecticides for Formosan subterranean termite (Isoptera: Rhinotermitidae) control in Hawaii. J. Econ. Entomol. 86, 761766.Google Scholar
Leidy, R. B., Wright, C. G. and Dupree, H. E. Jr. (1991) Applicator exposure to airborne concentration of termiticide formulation of chlorpyrifos. Bull. Environ. Contam. Toxicol. 47, 177183.CrossRefGoogle ScholarPubMed
Litchfield, M. H. (1985) Toxicity to mammals. In The Pyrethroid Insecticides (Edited by Leahey, J. P.), p. 99. Taylor and Francis, London.Google Scholar
Mauldin, J., Jones, S. and Beal, R. (1987) Viewing termiticides. Pest Control 55, 4648, 53, 56, 57 and 59.Google Scholar
Perti, S. L., Cheema, P. S., Dixit, R. S., Srivastava, A. S. and Ranganathan, S. K. (1963) Development of standard test method for evaluation of insect proofness of woollen textiles. Defence Sci. J. 13, 138.Google Scholar
Rao, K. M. and Mohan, M. S. (1969) Termite-proofness of flexible packaging materials for foodstuffs used in defence services. Proceedings of Symposium on Stores Preservation, pp. 2730.Google Scholar
Savage, P. E. (1988) Termiticide use and indoor air quality in the United States. Rev. Environ. Contam. Toxicol. 110, 117130.CrossRefGoogle Scholar
Sharma, R. N. (1987) Some new frontiers in the concept and practice of insect management. In Proceedings of the Symposium on Integrated Pest Control Progress and Perceptions. Trivandrum, pp. 27–31.Google Scholar
Sharma, R. N., Singh, Y. and Gulyani, B. B. (1990) Advances in termite repellent compounds. Pestology, XIV(II) 69.Google Scholar
Siu, R. G. H. (1951) Microbiological Decomposition of Cellulose. Reinhold Publishing Corporation, New York.Google Scholar
Snedecor, and Cochran, (1967) Statistical Methods. Collegiate Press, Iowa.Google Scholar
Su, N.-Y., Ban, P. M. and Schefferahn, R. H. (1991) Suppression of foraging population of the Formosan subterranean termite (Isoptera: Rhinotermitidae) by field applications of slow acting toxicant bait. J. Econ. Entomol. 84, 15251531.CrossRefGoogle Scholar
Yakushiji, T., Yoshimasa, K., Shuzo, T., Takashiro, N. and Ryoichi, T. (1991) Absorption of atmospheric chlordane on polished rice in homes after termite treatment: Studies on the route of chlordane contamination to humans—3rd report. J. Food Hyg. Soc. Japan 32, 7885.CrossRefGoogle Scholar
Yoshimura, T., Kunio, T. and Koichi, N. (1989) Effect of soil burial on the termiticidal performance of pyrethroids. Mater Org. (Berl.) 24, 227238.Google Scholar