Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T00:27:24.307Z Has data issue: false hasContentIssue false

A systematic review of economic evaluations for RPE65-mediated inherited retinal disease including HTA assessment of broader value

Published online by Cambridge University Press:  14 June 2023

Maria Farris*
Affiliation:
Market Access Department, Novartis Pharmaceuticals Australia, Macquarie Park, Australia
Stephen Goodall
Affiliation:
Centre for Health Economic Research and Evaluation, University of Technology Sydney, Ultimo, Australia
Richard De Abreu Lourenco
Affiliation:
Centre for Health Economic Research and Evaluation, University of Technology Sydney, Ultimo, Australia
*
Corresponding author: Maria Farris; Email: Maria.H.Kokoszka@alumni.uts.edu.au

Abstract

Objective

To summarize the key methodological challenges identified by health technology assessment (HTA) agencies assessing gene therapy (GT) and consideration of broad elements of value.

Method

Economic evaluations (EEs) of voretigene neparvovec (VN) in RPE65-mediated inherited retinal disease (IRD) published in English were selected. HTA evaluations from Australia, Canada, Ireland, Scotland, England, and the United States were reviewed. An existing methodological framework was used to identify the challenges and considerations.

Results

Eight unique EEs were identified of which six were evaluated by HTA agencies. Incremental cost-effectiveness ratios ranged from $68,951 to $643,813 per quality-adjusted life-years (QALY) gained (healthcare perspective) and dominant to $480,130 per QALY gained (societal perspective). The key challenges were the lack of validated surrogate outcome, utility values and indirect costs from IRD patients, and limited evidence of the long-term treatment effect. Two HTA agencies reviewed a range of novel broader elements of value and whether they were associated with VN while other agencies discussed some elements of broader value. Caregiver disutility was included in some, but not all, evaluations.

Conclusion

The methodological challenges were consistent with innovative interventions for rare diseases and managed using standard methods. Broader value was important to decision-makers but inconsistently applied across agencies. Possible reasons are limitations in the evidence available of the broader benefits that VN offers and how to incorporate these within an EE. A need exists for greater guidance and consistency across jurisdictions regarding the consideration of broader value that considers latest best practice.

Type
Assessment
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nicod, E, Kanavos, P. Developing an evidence-based methodological framework to systematically compare HTA coverage decisions: A mixed methods study. Health Policy. 2016;120(1):3545.CrossRefGoogle ScholarPubMed
Kole, A, Faurisson, F. Rare diseases social epidemiology: Analysis of inequalities. Adv Exp Med Biol. 2010;686:223250.CrossRefGoogle ScholarPubMed
Melnikova, I. Rare diseases and orphan drugs. Nat Rev Drug Discov. 2012;11(4):267268.CrossRefGoogle ScholarPubMed
Chim, L, Salkeld, G, Kelly, P, Lipworth, W, Hughes, DA, Stockler, MR. Societal perspective on access to publicly subsidised medicines: A cross sectional survey of 3080 adults in Australia. PLoS One. 2017;12(3):e0172971.CrossRefGoogle ScholarPubMed
Goswami, R, Subramanian, G, Silayeva, L, Newkirk, I, Doctor, D, Chawla, K, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;9:297.CrossRefGoogle ScholarPubMed
Wu, Y, Al-Janabi, H, Mallett, A, Quinlan, C, Scheffer, IE, Howell, KB, et al. Parental health spillover effects of paediatric rare genetic conditions. Qual Life Res. 2020;29(9):24452454.CrossRefGoogle ScholarPubMed
Whittal, A, Nicod, E, Drummond, M, Facey, K. Examining the impact of different country processes for appraising rare disease treatments: A case study analysis. Int J Technol Assess Health Care. 2021;37(1):e65.CrossRefGoogle ScholarPubMed
Lakdawalla, DN, Doshi, JA, Garrison, LP Jr, Phelps, CE, Basu, A, Danzon, PM. Defining elements of value in health care: A health economics approach: An ISPOR special task force report [3]. Value Health. 2018;21(2):131139.CrossRefGoogle Scholar
Drummond, MF, Neumann, PJ, Sullivan, SD, Fricke, FU, Tunis, S, Dabbous, O, et al. Analytic considerations in applying a general economic evaluation reference case to gene therapy. Value Health. 2019;22(6):661668.CrossRefGoogle ScholarPubMed
Chung, DC, Bertelsen, M, Lorenz, B, Pennesi, ME, Leroy, BP, Hamel, CP, et al. The natural history of inherited retinal dystrophy due to Biallelic mutations in the RPE65 gene. Am J Ophthalmol. 2019;199:5870.CrossRefGoogle ScholarPubMed
Huygens, SA, Versteegh, MM, Vegter, S, Schouten, LJ, Kanters, TA. Methodological challenges in the economic evaluation of a gene therapy for RPE65-mediated inherited retinal disease: The value of vision. Pharmacoeconomics. 2021;39:383397.CrossRefGoogle ScholarPubMed
Zimmermann, M, Lubinga, SJ, Banken, R, Rind, D, Cramer, G, Synnott, PG, et al. Cost utility of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Value Health. 2019;22(2):161167.CrossRefGoogle ScholarPubMed
Institute for Clinical and Economic Review (ICER). [Internet] Voretigene Neparvovec for Biallelic RPE65 mediated retinal disease: Effectiveness and Value: Institute for Clinical and Economic Review; 2018, 14 February 2018 [cited 2022 August 02]. Available from http://www.icer-review.org.Google Scholar
Farmer, C, Bullement, A, Packman, D, Long, L, Robinson, S, Nikram, E, et al. Voretigene neparvovec for treating inherited retinal dystrophies caused by RPE65 gene mutations: An evidence review group perspective of a NICE highly specialised technology appraisal. PharmacoEconomics. 2020;38(12):13091318.CrossRefGoogle ScholarPubMed
Viriato, D, Bennett, N, Sidhu, R, Hancock, E, Lomax, H, Trueman, D, et al. An economic evaluation of voretigene neparvovec for the treatment of biallelic RPE65-mediated inherited retinal dystrophies in the UK. Adv Therapy. 2020;37(3):12331247.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence (NICE). [Internet] Voretigene neparvovec for treating inherited retinal dystrophies caused by RPE65 gene mutations Highly Specialised technologies Guidance 2019 [cited 2022 August 02]. Available from: https://www.nice.org.uk/.Google Scholar
National Institute for Health and Care Excellence (NICE). [Internet] Voretigene neparvovec for treating inherited retinal dystrophies caused by RPE65 gene mutations [ID1054] Committee Papers. 2019 [cited 2022 August 02]. Available from: https://www.nice.org.uk/.Google Scholar
Medical Services Advisory Committee (MSAC). [Internet] Public summary document-application 1623-Voretigene neparvovec (Luxturna) for the treatment of biallelic RPE-65-mediated inherited retinal dystrophies. 2020 [cited 2022 August 02]. Available from http://www.msac.gov.au.Google Scholar
Scottish Medicines Consortium (SMC). [Internet] Scottish medicines consortium Luxturna assessment report. 2019 [cited 2022 August 02]. Available from https://www.scottishmedicines.org.uk/.Google Scholar
National Centre for Pharmacoeconomics Ireland (NCPE). [Internet] Ireland NCPE review of Luxturna HTA ID 19041. 2020 [cited 2022 August 02]. Available from: https://www.ncpe.ie/.Google Scholar
Uhrmann, MF, Lorenz, B, Gissel, C. Cost effectiveness of voretigene neparvovec for RPE65-mediated inherited retinal degeneration in Germany. Translat Vis Sci Technol. 2020;9(9):18.Google ScholarPubMed
Johnson, S, Buessing, M, O’Connell, T, Pitluck, S, Ciulla, TA. Cost-effectiveness of voretigene neparvovec-rzyl vs standard care for RPE65-mediated inherited retinal disease. JAMA Ophthalmol. 2019;137(10):11151123.CrossRefGoogle ScholarPubMed
Canadian Agency for Drugs and Technologies in Health (CADTH). [Internet] Voretigene neparvovec. 2020 [cited 2022 August 02]. Available from https://www.cadth.ca.Google Scholar
Bennett, J, Wellman, J, Marshall, KA, McCague, S, Ashtari, M, DiStefano-Pappas, J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: A follow-on phase 1 trial. Lancet. 2016;388(10045):661672.CrossRefGoogle ScholarPubMed
Russell, S, Bennett, J, Wellman, JA, Chung, DC, Yu, ZF, Tillman, A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849860.CrossRefGoogle ScholarPubMed
Spark Therapeutics. U.S. food and drug administration (FDA) advisory committee briefing document Luxturna (voretigene neparvovec). 2017 [cited 2022 August 02]. Available from https://www.fda.gov.Google Scholar
Chung, DC, McCague, S, Yu, ZF, Thill, S, DiStefano-Pappas, J, Bennett, J, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies. Clin Exp Ophthalmol. 2018;46(3):247259.CrossRefGoogle ScholarPubMed
Maguire, AM, Russell, S, Wellman, JA, Chung, DC, Yu, ZF, Tillman, A, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: Results of phase 1 and 3 trials. Ophthalmology. 2019;126(9):12731285.CrossRefGoogle ScholarPubMed
Lloyd, A, Piglowska, N, Ciulla, T, Pitluck, S, Johnson, S, Buessing, M, et al. Estimation of impact of RPE65-mediated inherited retinal disease on quality of life and the potential benefits of gene therapy. Br J Ophthalmol. 2019;103(11):16101614.CrossRefGoogle ScholarPubMed
Brown, GC. Vision and quality-of-life. Trans Am Ophthalmol Soc. 1999;97:473511.Google ScholarPubMed
Brown, MM, Brown, GC, Sharma, S, Kistler, J, Brown, H. Utility values associated with blindness in an adult population. Br J Ophthalmol. 2001;85(3):327331.CrossRefGoogle Scholar
Brown, MM, Brown, GC, Sharma, S, Landy, J. Health care economic analyses and value-based medicine. Surv Ophthalmol. 2003;48(2):204223.CrossRefGoogle ScholarPubMed
Sharma, S, Oliver-Fernandez, A, Bakal, J, Hollands, H, Brown, GC, Brown, MM. Utilities associated with diabetic retinopathy: Results from a Canadian sample. Br J Ophthalmol. 2003;87(3):259261.CrossRefGoogle ScholarPubMed
Brown GaB, M. Comment on voretigene neparvovec for biallelic RPE65-mediated retinal disease: Effectiveness and value. Draft evidence report, November 13, 2017 [cited 2022 August 02]. Available from: http://www.icer-review.org.Google Scholar
Wittenberg, E, Prosser, LA. Disutility of illness for caregivers and families: A systematic review of the literature. Pharmacoeconomics. 2013;31(6):489500.CrossRefGoogle ScholarPubMed
Wright, SE, Keeffe, JE, Thies, LS. Direct costs of blindness in Australia. Clin Exp Ophthalmol. 2000;28(3):140142.CrossRefGoogle ScholarPubMed
Lloyd, A, Nafees, B, Gavriel, S, Rousculp, MD, Boye, KS, Ahmad, A. Health utility values associated with diabetic retinopathy. Diabet Med. 2008;25(5):618624.CrossRefGoogle ScholarPubMed
Garrison, LP, Pezalla, E, Towse, A, Yang, H, Faust, E, Wu, EQ, et al. Hemophilia gene therapy value assessment: methodological challenges and recommendations. Value Health. 2021;24(11):16281633.CrossRefGoogle ScholarPubMed
Garrison, LP, Jackson, T, Paul, D, Kenston, M. Value-based pricing for emerging gene therapies: The economic case for a higher cost-effectiveness threshold. J Manag Care Spec Pharm. 2019;25(7):793799.Google ScholarPubMed
Xie, F, Zhou, T. Industry sponsorship bias in cost effectiveness analysis: Registry based analysis. BMJ. 2022;377:e069573.CrossRefGoogle ScholarPubMed
Medical Services Advisory Committee (MSAC). Guidelines for preparing assessments for the medical services advisory committee. 2021 [cited 2022 August 02]. Available from: http://www.msac.gov.au.Google Scholar
National Institute for Health and Care Excellence (NICE) [Internet] Interim process and methods of the highly specialised technologies programme updated. 2017 [cited 2023 April 01]. Available from: https://www.nice.org.uk/.Google Scholar
Oliva-Moreno, J, Trapero-Bertran, M, Pena-Longobardo, LM, Del Pozo-Rubio, R. The valuation of informal care in cost-of-illness studies: A systematic review. Pharmacoeconomics. 2017;35(3):331345.CrossRefGoogle ScholarPubMed
Australian Department of Health and Ageing (DoHA). Australia health technology assessment policy and methods review terms of reference (TOR). 2023. [cited 2023 April 01]. Available from https://www.health.gov.au/our-work/health-technology-assessment-policy-and-methods-review.Google Scholar
Qiu, T, Pochopien, M, Hanna, E, Liang, S, Wang, Y, Han, R, et al. Challenges in the market access of regenerative medicines, and implications for manufacturers and decision-makers: A systematic review. Regen Med. 2022;17(3):119139.CrossRefGoogle ScholarPubMed
Coyle, D, Durand-Zaleski, I, Farrington, J, Garrison, L, Graf von der Schulenburg, JM, Greiner, W, et al. HTA methodology and value frameworks for evaluation and policy making for cell and gene therapies. Eur J Health Econ. 2020;21(9):14211437.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence (NICE). [Internet] NICE health technology evaluations: The manual. 2022 [cited 2023 April 01]. Available from https://www.nice.org.uk/.Google Scholar
Al-Janabi, H, van Exel, J, Brouwer, W, Coast, J. A framework for including family health spillovers in economic evaluation. Med Decis Making. 2016;36(2):176186.CrossRefGoogle ScholarPubMed
Supplementary material: File

Farris et al. supplementary material

Table S1

Download Farris et al. supplementary material(File)
File 20 KB
Supplementary material: File

Farris et al. supplementary material

Table S2

Download Farris et al. supplementary material(File)
File 23.9 KB