Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-nd7s2 Total loading time: 0.144 Render date: 2021-05-11T02:26:46.964Z Has data issue: true Feature Flags: {}

Economic analysis of the implementation of autologous transfusion technologies throughout England

Published online by Cambridge University Press:  26 April 2005

Simon Dixon
Affiliation:
University of Sheffield
Virge James
Affiliation:
National Blood Service (Sheffield)
Daniel Hind
Affiliation:
University of Sheffield
Craig J. Currie
Affiliation:
University of Wales College of Medicine

Abstract

Objectives: This study aims to provide the first estimates of the costs and effects of the large scale introduction of autologous transfusion technologies into the United Kingdom National Health Service.

Methods: A model was constructed to allow disparate data sources to be combined to produce estimates of the scale, costs, and effects of introducing four interventions. The interventions considered were preparing patients for surgery (PPS) clinics, preoperative autologous donation (PAD), intraoperative cell salvage (ICS), and postoperative cell salvage (PoCS).

Results: The key determinants of cost per operation are the anticipated level of reductions in blood use, the mean level of blood use, mean length of stay, and the cost of the technology. The results show the potential for considerable reductions in blood use. The greatest reductions are anticipated to be through the use of PPS and ICS. Vascular surgery, transplant surgery, and cardiothoracic surgery appear to be the specialties that will benefit most from the technologies.

Conclusions: Several simplifications were used in the production of these estimates; consequently, caution should be used in their interpretation and use. Despite the drawbacks in the methods used in the study, the model shows the scale of the issue, the importance of gathering better data, and the form that data must take. Such preliminary modeling exercises are essential for rational policy development and to direct future research and discussion among stakeholders.

Type
RESEARCH REPORTS
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Claxton K, Neumann PJ, Araki S, Weinstein MC. 2001 Bayesian value-of-information analysis. An application to a policy model of Alzheimer's disease. Int J Technol Assess Health Care. 17: 3855.Google Scholar
Goodnough LT, Brecher ME, Kanter MH, AuBuchon JP. 1999 Transfusion medicine: Blood transfusion. N Engl J Med. 340: 438447.Google Scholar
Hill J. 2002. Trent cell salvage pilot study summary of cost data analysis. Sheffield: National Blood Service
Jefferies LC, Sachais BS, Young DS. 2001 Blood transfusion costs by diagnosis-related groups in 60 university hospitals in 1995. Transfusion. 41: 522529.Google Scholar
Mathoulin-Pelissier S, Salmi LR, Verret C, Demoures B. 2000 Blood transfusion in a random sample of hospitals in France. Transfusion. 40: 11401146.Google Scholar
Murphy MF, Edbury C, Wickenden C. 2002. Results of a questionnaire survey in relation to the implementation of the Health Services Circular 1998/224 ‘Better Blood Transfusion’. Available at: http://www.doh.gov.uk/bbt2/hscsurveyresults2002.doc. Accessed: July 25
National Blood Service. 2001. Blood matters. Issue 8. London: National Blood Service
Regan F, Taylor C. 2002 Blood transfusion medicine. BMJ. 325: 143147.Google Scholar
Sanguis Study Group. 1994 Use of blood products for elective surgery in 43 European hospitals. Transfus Med. 4: 251268.
Scottish Intercollegiate Guidelines Network. 2001. Perioperative blood transfusion for elective surgery. Edinburgh: Royal College of Physicians
Syrjala MT, Kytoniemi I, Mikkolainen K, Ranimo J, Lauharanta J. 2001 Transfusion practice in Helsinki University Hospital: An analysis of diagnosis-related groups (DRG). Transfus Med. 11: 423431.Google Scholar
Vamvakas E, Carven JH. 1998 Allogeneic blood transfusion, hospital charges, and length of hospitalization. Arch Pathol Lab Med. 122: 145151.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Economic analysis of the implementation of autologous transfusion technologies throughout England
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Economic analysis of the implementation of autologous transfusion technologies throughout England
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Economic analysis of the implementation of autologous transfusion technologies throughout England
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *