Skip to main content Accessibility help
×
Home
Hostname: page-component-5f95dd588d-l872j Total loading time: 0.211 Render date: 2021-10-28T16:56:19.999Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Assessing the early impact of a hospital-based health technology assessment program, smart innovation

Published online by Cambridge University Press:  15 July 2021

Erik J. Landaas*
Affiliation:
The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA Strategic Sourcing and Supply Chain Management, UW Medicine, Seattle, WA, USA
Ryan N. Hansen
Affiliation:
The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA
Geoffrey S. Baird
Affiliation:
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
Sean D. Sullivan
Affiliation:
The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA
*
Author for correspondence: Erik J. Landaas, E-mail: eriklandaas@gmail.com

Abstract

Objective

We evaluated the early impact of a new hospital-based health technology assessment (HB-HTA) program, called Smart Innovation, at the University of Washington Medical Center (UWMC).

Methods

We compared the UWMC's utilization trends for two surgical procedures to control hospitals by evaluating the difference before and after adoption decisions: (i) a new filter for transcatheter aortic valve replacement (TAVR) procedures that treat aortic valve stenosis and (ii) microwave ablation (MWA) for treating hepatocellular carcinoma. We used descriptive statistics to assess the difference between the UWMC and controls for TAVR and MWA procedures and multivariate difference-in-differences (DID) analyses to test for statistical significance.

Results

The UWMC experienced a 10 percent reduction in TAVR procedures compared with controls following the implementation of the TAVR Sentinel filter. The DID regression model indicated a 1.5 reduction in the number of TAVR procedures per quarter at the UWMC between the pre- and post period, which was not statistically significant (p-value: .87). The UWMC experienced a 51 percent reduction in utilization when compared with controls for MWA procedures in the pre- and post periods. The DID model for MWA indicated an 18.8 decrease in utilization per quarter during the study period for the UWMC, which was statistically significant (p-value: .0007). For MWA procedures, the UWMC experienced a $647,658 dollar reduction in total costs in the post period compared with controls.

Conclusions

When the UWMC used HB-HTA methods for technology adoption, there was a reduction in utilization and total costs when compared with controls; however, when the UWMC adopted a new technology without using HB-HTA methods, there was no difference in utilization.

Type
Method
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sampietro-Colom, L, Martin, J. Hospital-based health technology assessment: The next frontier. New York: Springer; 2016.CrossRefGoogle Scholar
Landaas, EJ, Baird, GS, Hansen, RN, Flum, DR, Sullivan, SD. Integrating formal technology assessment into an integrated healthcare delivery system: Smart Innovation. Int J Technol Assess Health Care. 2020;36:5863.CrossRefGoogle ScholarPubMed
Landaas, EJ, Eckel, AM, Wright, JL, Baird, GS, Hansen, RN, Sullivan, SD. Application of health technology assessment (HTA) to evaluate new laboratory tests in a health system: A case study of bladder cancer testing. Acad Pathol. 2020;7. doi:10.1177/2374289520968225.CrossRefGoogle Scholar
Gagnon, MP. Hospital-based health technology assessment: Developments to date. Pharmacoeconomics. 2014;32:819–24.CrossRefGoogle ScholarPubMed
United States Food and Drug Administration (USFDA) [Internet] Device Classification Under Section 513(f)(2)(De Novo). 2019 [refd 2020 Jan 11]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm?ID=DEN160043.Google Scholar
ECRI [Internet] Sentinel Cerebral Protection System (Boston Scientific Corp.) for Preventing Stroke during Transcatheter Aortic Valve Replacement. 2019 [refd 2020 Oct 20]. Available from: https://www.ecri.org/components/ProductBriefs/Pages/25660.aspx.Google Scholar
United States Food and Drug Administration (USFDA) [Internet] Premarket Approval, Radiofrequency. 2021 [refd 2021 Jan 12]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P930029.Google Scholar
United States Food and Drug Administration (USFDA) [Internet] 510(k) Premarket Notification, Microwave Ablation System. 2021 [refd 2021 Jan 12]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163118.Google Scholar
Poulou, LS, Botsa, E, Thanou, I, Ziakas, PD, Thanos, L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Hepatol. 2015;7:1054.CrossRefGoogle ScholarPubMed
Poggi, G, Tosoratti, N, Montagna, B, Picchi, C. Microwave ablation of hepatocellular carcinoma. World J Hepatol. 2015;7:2578.CrossRefGoogle ScholarPubMed
Vizient [Internet] What We Do. 2020 [refd 2020 Dec 12]. Available from: https://www.vizientinc.com/what-we-do.Google Scholar
American Hospital Association (AHA) [Internet] About the AHA. 2020 [refd 2020 Dec 12]. Available from: https://www.aha.org/about.Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.Google Scholar
Goldsweig, AM, Tak, HJ, Chen, L-W, Aronow, HD, Shah, B, Kolte, DS, et al. The evolving management of aortic valve disease: 5-year trends in SAVR, TAVR, and medical therapy. Am J Cardiol. 2019;124:763–71.CrossRefGoogle ScholarPubMed
Wing, C, Simon, K, Bello-Gomez, RA. Designing difference in difference studies: Best practices for public health policy research. Annu Rev Public Health. 2018;39:453–69.CrossRefGoogle ScholarPubMed
Abadie, A. Semiparametric difference-in-differences estimators. Rev Econ Stud. 2005;72:119.CrossRefGoogle Scholar
Supplementary material: File

Landaas et al. supplementary material

Landaas et al. supplementary material

Download Landaas et al. supplementary material(File)
File 119 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Assessing the early impact of a hospital-based health technology assessment program, smart innovation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Assessing the early impact of a hospital-based health technology assessment program, smart innovation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Assessing the early impact of a hospital-based health technology assessment program, smart innovation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *