Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:26:38.577Z Has data issue: false hasContentIssue false

Lens-based 77 GHZ MIMO radar for angular estimation in multitarget environments

Published online by Cambridge University Press:  24 April 2014

Steffen Lutz*
Affiliation:
Laboratory of Microtechnology, University of Applied Sciences Ulm, Albert Einstein Allee 55, 89081 Ulm, Germany. Phone: +49 731 50 28575
Thomas Walter
Affiliation:
Laboratory of Microtechnology, University of Applied Sciences Ulm, Albert Einstein Allee 55, 89081 Ulm, Germany. Phone: +49 731 50 28575
Robert Weigel
Affiliation:
Institute for Electronics Engineering, University of Erlangen-Nuremberg, Cauerstrasse 9, 91058 Erlangen, Germany
*
Corresponding author: S. Lutz Email: Steffen.Lutz@ieee.org

Abstract

The demanding tasks for automotive radar systems in multitarget scenarios require an increased target separation performance and new sensor concepts. In this contribution, a highly integrated 77 GHz time domain multiplex (TDM) MIMO radar is presented. The sensor is feasible for advanced direction of arrival (DOA) estimation in azimuth and elevation. For efficient and high-quality measurements a fractional-n phased locked loop (PLL) with integrated waveform generator, enabling chirp and frequency modulated continous waveform (FMCW) modulations, is implemented. Spatial beamforming is done with series feed array patch antennas in combination with a dielectric cylindrical lens. For the improvement of the direction of arrival (DOA) estimation performance a new lens-based MIMO radar approach is introduced. Therefore the classical MIMO approach is combined with the advantages of an optical beamforming concept. Due to the usage of these techniques the sensor performance in accuracy, ambiguity suppression, and angular resolution can be significantly increased.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Wanner, R.; Lachner, R.; Olbrich, G.R.: SiGe integrated mm-wave push pull VCOs with reduced power consumption, in Radio Frequency Integrated Circuits (RFIC) Symp., 2006, 1–4, doi: 10.1109/RFIC.2006.1651184.Google Scholar
[2]Menzel, W.; Moebius, A.: Antenna concepts for millimeter-wave automotive radar sensors. Proc. IEEE, 100 (7) (2012), 23722379. doi: 10.1109/JPROC.2012.2184729.Google Scholar
[3]Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C.: Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech., 60 (3) (2012), 845860. doi: 10.1109/TMTT.2011.2178427.Google Scholar
[4]Fishler, E. et al. : MIMO radar: an idea whose time has come, in Proc. IEEE Radar Conf., 2004, 71–78. doi: 10.1109/NRC.2004.1316398.Google Scholar
[5]Feger, R. et al. : A 77 GHz FMCW MIMO radar based on a SiGe single chip transceiver. IEEE Trans. Microw. Theory Tech., 57 (5) (2009), 10201035. doi: 10.1109/TMTT.2009.2017254.Google Scholar
[6]Lutz, S.; Baur, K.; Walter, T.: 77 GHz lens-based multistatic MIMO radar with colocated antennas for automotive applications, in Int. Microwave Symp. Digest, 2012, 1–3. doi: 10.1109/MWSYM.2012.6259526.Google Scholar
[7]Lutz, S.; Walter, T.: Lens based 77 GHz TDM MIMO radar sensor for angular estimation in multi target environments, in Eur. Radar Conf., 2013, 212–215.Google Scholar
[8]Binzer, T.; Klar, M.; Gross, V.: Development of 77 GHz radar lens antennas for automotive applications based on given parameters, in 2nd Int. ITG Conf. Antennas (INICA'07), 2007, 205–209. doi: 10.1109/INCIA.2007.4353963.Google Scholar
[9]Hecht, E.; Optics, 3rd ed., Peter-Peregnius, London, (1991), 1981.Google Scholar
[10]Wagner, C. et al. : A 77 GHz automotive radar receiver in a wafer level package, in Radio Frequency Integrated Circuits Symp., 2012, 511–514. doi: 10.1109/RFIC.2012.6242334.Google Scholar
[11]Stove, A.G.: Linear FMCW radar techniques, Radar and Signal Processing, IEE Proceedings F., 139 (5) (1992), 343, 350.Google Scholar
[12]Brunnbauer, M.; Meyer, T.; Ofner, G.; Mueller, K.; Hagen, R.: Embedded wafer level ball grid array (eWLB), in Electronic Manufacturing Technology Symp., Singapore, 2008, 994–998. doi: 10.1109/IEMT.2008.5507866.Google Scholar
[13]Baur, K.; Mayer, M.; Binzer, T.; Walter, T.: Beamforming concepts for angular measurements in azimuth and elevation with 77 GHz lens based radar sensors, in Int. Microwave Symp. Digest, 2011, 1–4. doi: 10.1109/MWSYM.2011.5972592.Google Scholar
[14]Volkais, J.L.: Antenna Engineering Handbook, 4th ed., McGraw-Hill, New York, 2007.Google Scholar
[15]Baur, K.Mayer, M.; Stockle, A.; Lutz, S.; Walter, T.: Lens based beamforming principles for 77 GHz automotive radar sensors, in Eur. Radar Conf., 2011, 233–236.Google Scholar
[16]Sullivan, M.: Practical Array Processing, McGraw-Hill, New York, 2009.Google Scholar
[17]Kalkan, Y.; Baykal, B.: Cramer–Rao bound for target localization with MIMO radar, in 20th Signal Processing and Communications Applications Conf., (SIU) 2012, 1–4. doi: 10.1109/SIU.2012.6204638.Google Scholar
[18]Li, J.; Stoica, P.: MIMO Radar Signal Processing, John Wiley & Sons, Hoboken, 2009, pp. 170173. doi: 10.1002/9780470391488.Google Scholar
[19]Schmidt, C.M.; Feger, R.; Pfeffer, C.; Stelzer, A.: Motion compensation and efficient array design for TDMA FMCW MIMO radar systems, in 7th Eur. Conf. Antennas and Propagation (EUCAP), 2012, 1746–1750. doi: 10.1109/EuCAP.201206206605.Google Scholar
[20]Guetlein, J.; Kirschner, A.; Detlefsen, J.: Motion compensation for a TDM FMCW MIMIO radar system, in Eur. Radar Conf., 2013, 37–40.Google Scholar
[21]Candes, E.J.; Romberg, J.; Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52 (2) (2006), 489509. doi: 10.1109/TIT.2005.862083.Google Scholar