Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-25T02:40:57.211Z Has data issue: false hasContentIssue false

Automated design of balanced wideband bandpass filters based on mirrored stepped impedance resonators (SIRs) and interdigital capacitors

Published online by Cambridge University Press:  06 June 2016

Marc Sans
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, CIMITEC, 08193 Bellaterra, Spain. Phone: +34 93 581 35 24
Jordi Selga*
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, CIMITEC, 08193 Bellaterra, Spain. Phone: +34 93 581 35 24
Paris Vélez
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, CIMITEC, 08193 Bellaterra, Spain. Phone: +34 93 581 35 24
Ana Rodríguez
Affiliation:
Departamento de Comunicaciones-iTEAM, Universitat Politècnica de València, 46022 Valencia, Spain
Jordi Bonache
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, CIMITEC, 08193 Bellaterra, Spain. Phone: +34 93 581 35 24
Vicente E. Boria
Affiliation:
Departamento de Comunicaciones-iTEAM, Universitat Politècnica de València, 46022 Valencia, Spain
Ferran Martín
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, CIMITEC, 08193 Bellaterra, Spain. Phone: +34 93 581 35 24
*
Corresponding author:J. Selga Email: jordi.selga@uab.cat

Abstract

This paper presents small balanced bandpass filters exhibiting wide differential-mode pass bands and high common-mode suppression. The filters are implemented in microstrip technology and their topology consists of multisection mirrored stepped impedance resonators (SIRs) alternating with mirrored interdigital capacitors. The mirrored SIRs provide the required common-mode transmission zeros to achieve effective rejection of that mode in the region of interest, i.e. the differential-mode pass band. An automated design method for such filters, based on aggressive space mapping, is reported. The method uses the equivalent circuit model of both the mirrored SIRs and the interdigital capacitors, and filter synthesis is based on a quasi-Newton iterative algorithm where parameter extraction is the key aspect. The automated design approach is illustrated through an order-3 filter, where it is demonstrated that the filter topology is generated from the specifications. As compared with previous balanced filters based on mirrored SIRs coupled through admittance inverters, the proposed filters of this work are smaller and the design method is simplified, since bandwidth compensation due to the narrowband functionality of the inverters is avoided.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lim, T.B.; Zhu, L.: A differential-mode wideband bandpass filter on microstrip line for UWB applications. IEEE Microw. Wireless Compon. Lett., 19 (2009), 632634.Google Scholar
[2] Lim, T.B.; Zhu, L.: Differential-mode ultra-wideband bandpass filter on microstrip line. Electron. Lett., 45 (2009), 11241125.CrossRefGoogle Scholar
[3] Lim, T.B.; Zhu, L.: Highly selective differential-mode wideband bandpass filter for UWB application. IEEE Microw. Wireless Compon. Lett., 21 (2011), 133135.CrossRefGoogle Scholar
[4] Abbosh, A.M.: Ultrawideband balanced bandpass filter. IEEE Microw. Wireless Compon. Lett., 21 (2011), 480482.CrossRefGoogle Scholar
[5] Zhu, H.T.; Feng, W.J.; Che, W.Q.; Xue, Q.: Ultra-wideband differential bandpass filter based on transversal signal-interference concept. Electron. Lett., 47 (2011), 10331035.Google Scholar
[6] Wu, X-H.; Chu, Q-X.: Compact differential ultra-wideband bandpass filter with common-mode suppression. IEEE Microw. Wireless Compon. Lett., 22 (2012), 456458.CrossRefGoogle Scholar
[7] Feng, W.; Che, W.: Novel wideband differential bandpass filters based on T-shaped structure. IEEE Trans. Microw. Theory. Tech., 60 (2012), 15601568.CrossRefGoogle Scholar
[8] Feng, W.; Che, W.; Ma, Y.; Xue, Q.: Compact wideband differential bandpass filters using half-wavelength ring resonator. IEEE Microw. Wireless Compon. Lett., 23 (2013), 8183.CrossRefGoogle Scholar
[9] Wu, X.-H.; Chu, Q.-X.; Qiu, L.-L.: Differential wideband bandpass filter with high-selectivity and common-mode suppression. IEEE Microw. Wireless Compon. Lett., 23 (2013), 644646.CrossRefGoogle Scholar
[10] Vélez, P. et al. : Differential bandpass filters with common-mode suppression based on stepped impedance resonators (SIRs). IEEE MTT-S Int. Microwave Symp., 2013, Seattle (USA).CrossRefGoogle Scholar
[11] Vélez, P. et al. : Differential bandpass filter with common mode suppression based on open split ring resonators and open complementary split ring resonators. IEEE Microw. Wireless Compon. Lett., 23 (2013), 2224.CrossRefGoogle Scholar
[12] Horestani, A.K.; Durán-Sindreu, M.; Naqui, J.; Fumeaux, C.; Martín, F.: S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microw. Wireless Compon. Lett., 24 (2014), 150152.Google Scholar
[13] Wang, X.-H., Zhang, H.; Wang, B.-Z.: A novel ultra-wideband differential filter based on microstrip line structures. IEEE Microw. Wireless Compon. Lett., 23 (2013), 128130.CrossRefGoogle Scholar
[14] Shi, J.; Shao, C.; Chen, J.-X.; Lu, Q.-Y.; Peng, Y.; Bao, Z.-H: Compact low-loss wideband differential bandpass filter with high common-mode suppression. IEEE Microw. Wireless Compon. Lett., 23 (2013), 480482.CrossRefGoogle Scholar
[15] Vélez, P.; Durán-Sindreu, M.; Naqui, J.; Bonache, J.; Martín, F.: Common-mode suppressed differential bandpass filter based on open complementary split ring resonators (OCSRRs) fabricated in microstrip technology without ground plane etching. Microw. Opt. Technol. Lett., 56 (2014), 910916.CrossRefGoogle Scholar
[16] Li, L.; Bao, J.; Du, J.-J.; Wang, Y.-M.: Differential wideband bandpass filters with enhanced common-mode suppression using internal coupling technique. IEEE Microw. Wireless Compon. Lett., 24 (2014), 300302.Google Scholar
[17] Vélez, P. et al. : Ultra-compact (80 mm2) differential-mode ultra-wideband (UWB) bandpass filters with common-mode noise suppression. IEEE Trans. Microw. Theory Tech., 63 (2015), 12721280.CrossRefGoogle Scholar
[18] Guo, X.; Zhu, L.; Tam, K.-W.; Wu, W.: Wideband differential bandpass filters on multimode slotline resonator with intrinsic common-mode rejection. IEEE Trans. Microw. Theory Tech., 63 (2015), 15871594.CrossRefGoogle Scholar
[19] Sans, M.; Selga, J.; Vélez, P.; Rodríguez, A.; Boria, V.E.; Martín, F.: Application of aggressive space mapping (ASM) to the automated design of differential-mode wideband bandpass filters with common-mode suppression. European Microwave Conf., Paris, France, 6–11 September 2015.Google Scholar
[20] Sans, M.; Selga, J.; Rodríguez, A.; Bonache, J.; Boria, V.E.; Martín, F.: Design of planar wideband bandpass filters from specifications using a two-step aggressive space mapping (ASM) optimization algorithm. IEEE Trans. Microw. Theory Tech., 62 (2014), 33413350.Google Scholar
[21] Hong, J.S.; Lancaster, M.J.: Microstrip Filters for RF/Microwave Applications, Wiley, New York, NY, USA, 2001.CrossRefGoogle Scholar
[22] Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Grobelny, P.A.; Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech., 42 (1994), 25362544.Google Scholar
[23] Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Hemmers, R.H.; Madsen, K.: Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech., 43 (1995), 28742882.CrossRefGoogle Scholar
[24] Pozar, D.M.: Microwave Engineering, Addison-Wesley, Boston, MA, USA, 1990.Google Scholar