Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.481 Render date: 2021-11-27T16:00:28.083Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Analysis and design of a high-gain 100–180-GHz differential power amplifier in 130 nm SiGe BiCMOS

Published online by Cambridge University Press:  10 February 2017

Faisal Ahmed*
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Muhammad Furqan
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Klaus Aufinger
Affiliation:
Infineon Technologies, Am Campeon, 85579 Neubiberg, Germany
Andreas Stelzer
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
*
Corresponding author: F. Ahmed Email: f.ahmed@nthfs.jku.at

Abstract

This paper presents the design and measurement results of a high-gain D-band broadband power amplifier (PA) implemented in a 130 nm SiGe BiCMOS technology. The topology of the PA is based on four differential cascode stages with interstage matching networks. A detailed analysis of the frequency behavior of the transimpedance-gain of the common-base stage of the cascode is presented by means of small-signal equivalent circuits, when the proposed four-reactance wideband matching network is used for output matching to the subsequent stage. The effect of the size of the active devices, in achieving a desired gain, bandwidth, and output power, is investigated. The fabricated D-band amplifier is characterized on-wafer demonstrating a peak differential gain and output power of about 25 dB and 11 dBm, respectively, while utilizing a DC power of 262 mW from a 2.7 V supply. The 3-dB small-signal bandwidth of the PA spans from 100 to 180 GHz (limited by the measurement setup), making it the first SiGe-based PA to cover the entire D-band frequency range. The PA achieves a state-of-the-art differential gain-bandwidth product of around 1.4 THz and the highest GBW/PDC ratio of 5.2 GHz/mW among all D-Band Si-based PAs.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Deal, W.R. et al. Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs. IEEE Microw. Wireless Compon. Lett., 21 (2) (2011), 368370.CrossRefGoogle Scholar
[2] Urteaga, M.; Pierson, R.; Rowell, P.; Jain, V.; Lobisser, E.; Rodwell, M.J.W.: 130 nm InP DHBTs with f T > 0.52 THz and f max > 1.1 THz, in 69th Annual Device Research Conf. DRC, 2011, 281282.+0.52+THz+and+f+max+>+1.1+THz,+in+69th+Annual+Device+Research+Conf.+DRC,+2011,+281–282.>Google Scholar
[3] Furqan, M.; Ahmed, F.; Feger, R.; Aufinger, K.; Stelzer, A.: A 122-GHz system-in-package radar sensor with BPSK modulator in a 130-nm SiGe BiCMOS Technology, IEEE Eur. Microwave Conf., London, UK, 2016.Google Scholar
[4] Rebeiz, G.M. et al. Millimeter-wave large-scale phased-arrays for 5 G systems, in Proc. IEEE Int. Microwave Symp., Phoenix, AZ, 2015.Google Scholar
[5] Böck, J. et al. SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Boston, 2015.Google Scholar
[6] Schröter, M. et al. SiGE HBT technology: future trends and TCAD-based roadmap, in Proc. of the IEEE, 2016.Google Scholar
[7] Schröter, M.: The EU Dotseven project: Overview and results, in Bipolar/BiCMOS Circuits and Technol. Meeting (BCTM), New Brunswick, NJ, 2016.Google Scholar
[8] Heinemann, B. et al. SiGe HBT with fT/fmax of 505 GHz/720 GHz, in IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2016.Google Scholar
[9] Hajimiri, A.: Distributed integrated circuits: an alternative approach to high-frequency design. IEEE Commun. Mag., 40 (2) (2002), 168173.CrossRefGoogle Scholar
[10] Heydari, P.: Distributed integrated circuits for broadband communications: a DL talk at SSCS-Orage county in May. IEEE Solid-State Circuits Mag., 6 (3) (2014), 7880.CrossRefGoogle Scholar
[11] Sangwoo, Y.; Lee, I.; Urteaga, M.; Kim, M.; Sanggeun, J.: A fully-integrated 40–222 GHz InP HBT distributed amplifier. IEEE Microw. Wireless Compon. Lett., 24 (7) (2014), 460462.Google Scholar
[12] Pahl, P. et al. A 50 to 146 GHz power amplifier based on magneteic transformers and distributed gain cells. IEEE Microw. Wireless Compon. Lett., 25 (9) (2015), 615617.CrossRefGoogle Scholar
[13] Eriksson, K.; Darwazeh, I.; Zirath, H.: InP DHBT distributed amplifiers with up to 235-GHz bandwidth. IEEE Trans. Microw. Theory Tech., 63 (4) (2015), 13341341.CrossRefGoogle Scholar
[14] Fritsche, D.; Tretter, G.; Carta, C.; Ellinger, F.: A trimmable cascaded distributed amplifier with 1.6 THz gain-bandwidth product. IEEE Trans. THz. Sci. Technol., 5 (6) (2015), 10941096.CrossRefGoogle Scholar
[15] Hsiao, Y.; Tsai, Z.; Liao, H.; Kao, J.; Wang, H.: Millimeter-wave CMOS power amplifiers with high output power and wideband performances. IEEE Trans. Microw. Theory Tech., 61 (12) (2013), 45204533.CrossRefGoogle Scholar
[16] Furqan, M.; Ahmed, F.; Rücker, H.; Stelzer, A.: A 140–180-GHz broadband amplifier with 7 dBm OP1dB, in Proc. IEEE CSCIS, New Orleans, LA, USA, Oct 2015, 14.Google Scholar
[17] Ahmed, F.; Furqan, M.; Aufinger, K.; Stelzer, A.: A SiGe-based broadband 100–180-GHz differential power amplifier with 11 dBm peak output power and >1.3 THz GBW, in IEEE Eur. Microwave Integrated Circuits Conf., London, UK, 2016.1.3+THz+GBW,+in+IEEE+Eur.+Microwave+Integrated+Circuits+Conf.,+London,+UK,+2016.>Google Scholar
[18] Ahmed, F.; Furqan, M.; Aufinger, K.; Stelzer, A.: Compact broadband amplifiers with up to 105 GHz bandwidth in SiGe BiCMOS, in Proc. IEEE Radio Frequency Integrated Circuits Conf., Phoenix, AZ, USA, 2015, 36.Google Scholar
[19] Costa, D.; Liu, W.U.; Harris, J.S.: Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. IEEE Trans. Electron Devices, 38 (9) (1991), 20182024.CrossRefGoogle Scholar
[20] Voinigescu, S.P. et al. A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J. Solid State Circuits, 32 (9) (1997), 14301439.CrossRefGoogle Scholar
[21] Liu, G.; Schuhmacher, H.: Broadband millimeter-wave LNAs (47–77 GHz and 70–140 GHz) using a T-type matching topology. IEEE J. Solid State Circuits, 48 (9) (2013), 20222029.Google Scholar
[22] Ahmed, F.; Furqan, M.; Stelzer, A.: A 200–325 GHz wideband, low-loss Marchand balun in SiGe BiCMOS technology, in IEEE Eur. Microwave Conf., 2015, 4043.Google Scholar
[23] Sarmah, N.; Heinemann, B.; Pfeiffer, U.: A 135–170 GHz power amplifier in an advanced SiGe HBT technology, in Proc. IEEE Radio Frequency Integrated Circuits Conf., Seattle, WA, USA, June 2013, 287290.Google Scholar
[24] Lin, H.; Rebeiz, G.M.: A 110–134-GHz SiGe amplifier with peak output power of 100–120 mW. IEEE Trans. Microw. Theory Tech., 62 (12) (2014), 29903000.CrossRefGoogle Scholar
[25] Al-Eryani, J. et al. A 162 GHz power amplifier with 14 dBm output power, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), New Brunswick, NJ, 2016.Google Scholar
[26] Daneshgar, S.; Buckwalter, J.F.: A 22 dBm, 0.6 mm2 D-band SiGe HBT power amplifier using series power combining sub-quarter-wavelength baluns, in Proc. IEEE CSICS, New Orleans, LA, USA, Oct 2015, 14.Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analysis and design of a high-gain 100–180-GHz differential power amplifier in 130 nm SiGe BiCMOS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Analysis and design of a high-gain 100–180-GHz differential power amplifier in 130 nm SiGe BiCMOS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Analysis and design of a high-gain 100–180-GHz differential power amplifier in 130 nm SiGe BiCMOS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *