Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T01:58:57.399Z Has data issue: false hasContentIssue false

Mars polar cap: a habitat for elementary life1

Published online by Cambridge University Press:  27 April 2009

M.K. Wallis*
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Wales, UK
J.T. Wickramasinghe
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Wales, UK
N.C. Wickramasinghe
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Wales, UK

Abstract

Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220–240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Poster paper at the Astrobiology Society of Britain Conference, Cardiff, July 2008.

References

Fenton, L.K., Geissler, P.E. & Haberle, R.M. (2007). Nature 446, 646649.Google Scholar
Hoover, R.B., Pikuta, E.V., Wickramasinghe, N.C., Wallis, M.K. & Sheldon, R.B. (2004). In Instruments, Methods, and Missions for Astrobiology VII, eds Levin, Hoover & Rozanov, , Proc. of SPIE, vol. 5555, pp. 93106. Bellingham, WA. (http://www.astrobiology.cf.ac.uk/SPIE2004.pdf).Google Scholar
Junge, K., Eicken, H., Swanson, B.D & Deming, J.W. (2006). Cryobiology 52, 417429.Google Scholar
McKay, C.P. (2003). In Third Mars Polar Sci. Conf. Lunar & Planetary Inst., Houston, Tx. www.lpi.usra.edu/meetings/polar2003/pdf/download/dnld17.pdf. p 2 (8056.pdf)Google Scholar
MEPAG Special Regions – Science Analysis Group. (2006). Astrobiol. 6, 677732.Google Scholar
Milkovich, S.M. & Head, J.W. (2005). J. Geophys. Res. 110(E01005).Google Scholar
Milkovich, S.M., Head, J.W., Neukum, G. & the HRSC Co-Investigator Team (2008). Planet. Space Sci. 56, 266288.CrossRefGoogle Scholar
Pelletier, J.D. (2004). Geology 32, 365367 & 384.Google Scholar
Schorghofer, N. (2007). Nature 449, 192195.Google Scholar
Schorghofer, N. & Aharonson, O. (2005). J. Geophys. Res. 110(E05003), 116.CrossRefGoogle Scholar
Schulze-Makuch, D., Fairén, A.G. & Davila, A.F. (2008). Int. J. Astrobiol. 7, 117141.Google Scholar
Skorov, Yu.V., Markiewicz, W.J., Basilevsky, A.T. & Keller, H.U. (2001). Planet. Space Sci. 49, 5963.Google Scholar
Tung, H.C., Bramhall, N.E. & Price, P.B. (2005). Proc. Natl. Acad. Sci. U.S.A. 102, 18 29218 296.CrossRefGoogle Scholar
Wallis, M.K., Wickramasinghe, J.T. & Wickramasinghe, N.C. (2008). EPSC Abstracts, vol. 3, EPSC2008-A-00540, COSIS.net (Copernicus Systems+Technology GmbH, Berlin).Google Scholar
Wickramasinghe, J.T. (2007). The role of comets in panspermia. PhD Thesis, Cardiff University.Google Scholar