Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-03T15:52:04.389Z Has data issue: false hasContentIssue false

Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

Published online by Cambridge University Press:  08 April 2011

Carol R. Stoker*
Affiliation:
NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
Jonathan Clarke
Affiliation:
Mars Society Australia, c/o 43 Michell St Monash, ACT 2904, Australia/Australian Centre for Astrobiology, Ground Floor, Biological Sciences Building, Sydney, NSW, Australia
Susana O.L. Direito
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
David Blake
Affiliation:
NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
Kevin R. Martin
Affiliation:
NASA Ames Research Center, Program Analysis and Business Integration Division, Moffett Field, CA 94035, USA
Jhony Zavaleta
Affiliation:
NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
Bernard Foing
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands European Space Agency (ESA), ESTEC SRE-S, Postbus 299, 2200 AG Noordwijk, The Netherlands

Abstract

We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml−1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.

Type
Research Article
Creative Commons
This is a work of U.S. Government and is not subject to copyright protection in United States.
Copyright
Copyright © Cambridge University Press 2011 This is a work of U.S. Government and is not subject to copyright protection in United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O.J. & Lucas, S.G. (1994). Middle Jurassic stratigraphy, sedimentation, and palaeogrography in the southwestern United States. Can. Soc. Pet. Geologists Mem. 17, 255264.Google Scholar
Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compounds on Mars. Geology 34(5), 357360.CrossRefGoogle Scholar
Azimi-Zoooz, A. & Duffy, C.J. (1993). Modeling transport of subsurface salinity from a Mancos Shale hillslope. Ground Water 31(6), 972981.CrossRefGoogle Scholar
Battler, M.M., Clarke, J.D.A. & Coniglio, M. (2006). Possible analog sedimentary and diagenetic features for Meridiani Planum sediments near Hanksville, Utah: Implications for Martian field studies. In Mars Analog Research, ed. Clarke, J.D.A., pp. 5570. American Astronautical Society for Science and Technology Series 111. Univelt, San Diego.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, Drossart P., and the OMEGA team. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 15761581.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., and the OMEGA team. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400404.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Arvidson, R.E., Gendrin, A., Gondet, B., Langevin, Y., Le Mouelic, S., Mangold, N., Morris, Mustard J.F., Poulet, F.,Quantin, C. and Sotin, C. (2007). Coupled ferric oxides and sulfates on the Martian surface. Science 317, 12061210.CrossRefGoogle ScholarPubMed
Bish, D.L., Blake, D., Sarrazin, P., Treiman, A., Hoehler, T., Hausrath, E.M., Midtkandal, I. & Steele, A. (2007). Field XRD/XRF mineral analysis by the MSL CheMin instrument [Abstract]. Lunar Planet. Sci. 38. LPI Contribution No. 1338, p. 1163.Google Scholar
Blake, D.F., Vaniman, D.T., Anderson, R., Bish, D., Chipera, S., Chemtob, S., Crisp, J., Desmarais, D.J., Downs, R., Farmer, J., et al. (2009). The CheMin Mineralogical Instrument on the Mars Science Laboratory Mission. In 40th Lunar and Planetary Science Conference 40, abstract 1484.Google Scholar
Borst, A., Peters, S., Foing, B.H., Stoker, C., Wendt, L., Gross, C., Zavaleta, J., Sarrazin, P., Blake, D., Ehrenfreund, P., Boche-Sauvan, L., et al. (2010). Geochemical Results from EuroGeoMars MDRS Utah 2009 Campaign. In 41st Lunar and Planetary Science Conference, Abstract 2744.Google Scholar
Cammeraat, L.H. & Imeson, A.C. (1999). The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain. CATENA 37(1), 107127.CrossRefGoogle Scholar
Chan, M.A., Beitler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2004). A possible terrestrial analogue for hematite concretions on Mars. Nature 429, 731734.CrossRefGoogle ScholarPubMed
Chevrier, V. & Mathe, P.E. (2007). Mineralogy and evolution of the surface of Mars: A review. Planetary and Space Science 55, 289314.CrossRefGoogle Scholar
Chevrier, V., Poulet, F. & Bibring, J.P. (2007). Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 6163. doi:1038/nature05961.CrossRefGoogle Scholar
Clark, B.C., Morris, R.V., McLennan, S.M., Gellert, R., Jolliff, B., Knoll, A.H., Squyres, S.W., Lowenstein, T.K., Ming, D.W. & Tosca, N.J. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240, 7394.CrossRefGoogle Scholar
Clarke, J.D.A. & Pain, C.F. (2003). From Utah to Mars: regolith-landform mapping and its application. In Mars Expedition Planning, ed. Cockell, C.C., 131160. American Astronautical Society – Science and Technology Series 107. Univelt, San Diego.Google Scholar
Clarke, J.D.A. & Stoker, C. (2011). Concretions in exhumed and inverted channels near Hanksville Utah: implications for Mars. International Journal of Astrobiology, Special Issue, in press.CrossRefGoogle Scholar
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res. 112 (G04S17), doi:10.1029/2006JG000311.Google Scholar
Corbeanu, R.M., Wizevich, M.C., Bhattacharya, J.P., Zeng, X. & McMechan, G.A. (2001). Three-dimensional architecture of ancient lower delta-plain point bars using Ground-Penetrating Radar, cretaceous ferron sandstone, Utah. AAPG Stud. Geol. 50, 427449.Google Scholar
Currie, B.S. (1998). Upper Jurassic – Lower Cretaceous Morrison and Cedar Mountain Formations, NE Utah–NW Colorado: relationships between nonmarine deposition and early Cordilleran foreland-basin development. J. Sedimentary Res. 68(4), 632652.CrossRefGoogle Scholar
Demko, T.M., Currie, B.S. & Nicoll, K.A. (2004). Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison formation (Upper Jurassic), Western Interior, USA. Sedimentary Geol. 167, 115135.CrossRefGoogle Scholar
Demko, T.M. & Parish, J.T. (2001). Paleoclimatic setting of the Upper Jurassic Morrison formation. Mod. Geol. 22, 283296.Google Scholar
Díez, B., Pedrós-Alió, C., Marsh, T.L. & Massana, R. (2001). Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl. Environ. Microbiol. 67(7), 29422951.CrossRefGoogle Scholar
Direito, S., Ehrenfreund, P., Marees, A., Staats, M., Foing, B.H. & Röling, W. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station(Utah). Int. J. Astrobiol. Special Issue, in press.CrossRefGoogle Scholar
Dowding, J., Alena, R., Clancey, W.J., Graham, J. & Sierhuis, M. (2006). Are you talking to me? Dialogue systems supporting mixed teams of humans and robots. In AAAI Fall Symposium 2006: Aurally Informed Performance: Integrating Machine Listening and Auditory Presentation in Robotic Systems, October, Washington, DC. http://ti.arc.nasa.gov/m/pub/1240h/1240%20(Dowding).pdf (accessed 19 February 2011).Google Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J., Calvin, W.M., Clark, R.N., Des Marais, D.J., Milliken, R.E. et al. (2008). Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1821832, DOI: 10.1126/science.1164759.CrossRefGoogle ScholarPubMed
Ehrenfreund, P. et al. (2011). Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. International Journal of Astrobiology, in press.CrossRefGoogle Scholar
Fairén, A.G., Davila, A.F., Lim, D., Bramall, N., Bonaccorsi, R., Zavaleta, J., Uceda, E.R., Stoker, C., Wierzchos, J., Dohm, J.M., et al. (2010). Astrobiology through the ages of Mars: the study of terrestrial analogues to understand habitability of Mars. Astrobiology 10, 821843, DOI:10.1089/ast2009.0440.CrossRefGoogle Scholar
Filmore, R. (2000). The Geology of the Parks Monuments and Wildlands of Southern Utah. University of Utah Press, Utah, UT.Google Scholar
Foing, B., Stoker, C., Zavaleta, J., Ehrenfreund, P., Thiel, C., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J., Direito, S., Kotler, M., Martins, Z., Orzechowska, G., Clarke, J., Gross, C., Wendt, L., Borst, A., Peters, S., Wilhelm, M.-B., Davies, G. and the ILEWG EuroGeoMars 2009 team (2011). “Field Astrobiology Research in Moon-Mars Analogue Site: Instruments and Methods”. International Journal of Astrobiology, in pressGoogle Scholar
Gattinger, A., Günthner, A., Schloter, M. & Munch, J. (2003). Characterisation of Archaea in soils by polar lipid analysis. Acta Biotechnol. 23(1), 2128.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J.P. et al. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 15871591.CrossRefGoogle ScholarPubMed
Godfrey, A.E. (1997). Wind erosion of Mancos Shale badland ridges by sudden drops in pressure. Earth Surf. Process. Landf. 22, 345352.3.0.CO;2-3>CrossRefGoogle Scholar
Godfrey, A.E., Everitt, B.L. & Duque, J.F.M. (2008). Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA. Geomorphology 102, 242251.CrossRefGoogle Scholar
Gómez-Silva, B., Rainey, F.A., Warren-Rhodes, K.A., McKay, C.P. & Navarro-González, R. (2008a). Atacama Desert soil microbiology. In Microbiology of Extreme Soils, volume 13, ed. Dion, P., Nautiyal, C.S. & Varma, A., pp. 117132. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Gómez-Silva, B., Rainey, F.A., Warren-Rhodes, K.A., McKay, C.P. & Navarro-González, R. (2008b). Atacama Desert soil microbiology. In Microbiology of Extreme Soils, ed. Dion, P. & Nautiyal, C.S., volume 13, pp. 117132. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Groemer, G., Gruber, V., Bishop, S., Peham, D., Wolf, L. & Hogl, B. (2010). Human performance data in a high workload environment during the simulated Mars expedition ‘AustroMars’. Acta Astronaut. 66, 780787.CrossRefGoogle Scholar
Griffith, J.D., Willcox, S., Powers, D.W., Nelson, R. & Baxter, B.K. (2008). Discovery of abundant cellulose microfibers encased in 250 ma permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8, 215228.CrossRefGoogle ScholarPubMed
Hansley, P.L. & Spirakis, C.S. (1992). Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau. Econ. Geol. 87, 352365.CrossRefGoogle Scholar
Hargitai, H.I., Gregory, H.S., Osburg, J., & Hands, D. (2007). Development of a local Toponym System at the Mars Desert Research Station. Cartographica 42(2), 179187.CrossRefGoogle Scholar
Hintze, L.H. & Kowallis, B.J. (2009). The geologic history of Utah. Brigham Young University Geology Studies Special Publication 9.Google Scholar
Howard, A.D. (1994). Badlands. In Geomorphology of Desert Environments, ed. Abrahams, A.D. & Parsons, A.J., pp. 213242. Chapman and Hall, London.CrossRefGoogle Scholar
JPL (2010) MSL Science Goals. http://msl-scicorner.jpl.nasa.gov/ScienceGoals/ (accessed 13 February 2011)Google Scholar
Keller, W.D. (1962). Clay minerals in the Morrison formation of the Colorado Plateau. U.S. Geol. Survey Bull. 1150, 90pp.Google Scholar
Kjemperud, A.V., Schomacker, E.R. & Cross, T.A. (2008). Architecture and stratigraphy of alluvial deposits, Morrison formation (Upper Jurassic), Utah. AAPG Bull. 92 (8), 10551076.CrossRefGoogle Scholar
Klingelhofer, G., Morris, R.V., Bernhardt, B., Schroder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B. et al. (2004). Jarosite and hematite at Meridiani Planum form Mossbauer spectrometer on the opportunity rover. Science 306, 17401745.CrossRefGoogle Scholar
Kotler, M., Quinn, R., Foing, B.H., Martins, Z., & Ehrenfreund, P. (2011). Analysis of Mineral Matrices of planetary soils analogs from the Utah Desert. Int. J. Astrobiol. in press.CrossRefGoogle Scholar
Larrone, J.B. (1981). Mancos Shale-associated alluvium. Earth Surf. Process. Landf. 6, 541552.CrossRefGoogle Scholar
Lester, E.D., Satomi, M. & Ponce, A. (2007). Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 39, 704708.CrossRefGoogle Scholar
Lodders, K. & Fegley, B. Jr. (1998) The Planetary Scientist's Companion. Oxford University Press, New York, 371p.CrossRefGoogle Scholar
Malin, M. & Edgett, K.S. (2000a). Evidence for recent groundwater seepage and surface runoff on Mars. Science 288 (5475), 23302335.CrossRefGoogle ScholarPubMed
Malin, M. & Edgett, K.S. (2000b). Sedimentary rocks on early Mars. Science 290, 19271937.CrossRefGoogle ScholarPubMed
Martins, Z., Sephton, M.A., Foing, B.H., & Ehrenfreund, P. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int. J. Astrobiol., Special Issue, in press.CrossRefGoogle Scholar
Marzzo, G.A., Roush, T.L., Lanza, N.L., McGuire, P.C., Newsom, H.E., Ollila, A.M. & Wiseman, S.M. (2009) Association of phyllosilicates and the inverted channel in Miyamoto crater, Mars. Geophys. Res. Lett. 36, L11204, doi:10.1029/2009GL038703.Google Scholar
McCleese, D. et al. (2006). Robotic Mars Exploration Strategy, 2007–2016, Report posted by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/index.html.Google Scholar
McConnell, D. (1953). An American occurrence of Volkonskoite. Clay and clay minerals: proceedings of the second national conference on clays and clay minerals, Columbia, MO, 15–17 October 1953, pp. 152157.CrossRefGoogle Scholar
McLennan, S.M., Bell, J.F., Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R. et al. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95121.CrossRefGoogle Scholar
MEPAG (2008), Mars Scientific Goals, Objectives, Investigations, and Priorities: 2008. ed. Johnson, J.R., 37 p. White Paper Posted September 2008 by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/index.htmlGoogle Scholar
Messeri, L. & Stoker, C. (2010). How will astronauts spend their time on the Moon? Insights from a field mission at Mars Analog Research Station, Utah, (abstract) Lunar Science Forum, Moffett Field, CA, July 2010.Google Scholar
Montgomery, S.L., Tabet, D.E., & Barker, C.E. (2001). Upper Cretaceous Ferron Sandstone: major coalbed methane playa in central Utah. AAPG Bull. 85(2), 199219.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown, N.K., Dobrea, E.Z.N., Seelos, F.P., Buczkowski, D.L., Wiseman, S.M., Arvidson, R.E. et al. (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06, doi:10.1029/2009JE003342.Google Scholar
Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.-P., Poulet, F., Bishop, J., Dobrea, E.N., et al. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature. 454, 305309.Google Scholar
Muyzer, G., Dewaal, E.C. & Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59(3), 695700.CrossRefGoogle Scholar
Nadeau, P.H. & Reynolds, C.R. (1981). Burial and contact metamorphism in the Mancos Shale. Clays Clay Miner. 29, 249259.CrossRefGoogle Scholar
Nelson, D.W. & Sommers, L.E. (1982). Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, ed. Page, A.L. et al. p. 539579. ASA Monograph Number 9. Routledge, UK.Google Scholar
Olsen, S.R. & Sommers, L.E. (1982). Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, ed. Page, A.L. et al. p. 403430. Agronomy Monographs, no. 9, 2nd edn. ASA and SSSA, Madison, WI.Google Scholar
Ormo, J., Komatsu, G., Chan, M.A., Beitler, B. & Parry, W.T. (2004). Geological features indicative of processes related to the hematite formation in Meridiani Planum and Aram Chaos, Mars: a comparison with diagenetic hematite deposits in southern Utah, USA. Icarus 171(2), 295316.CrossRefGoogle Scholar
Orzechowska, G.E., Kidd, R., Foing, B.H., Kanik, I., Stoker, C. & Ehrenfreund, P. (2011). Analysis of Mars analog soil samples using solid phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry. Int. J. Astrobiol. Special Issue, in press.CrossRefGoogle Scholar
Øvreås, L., Forney, L., Daae, F.L. & Torsvik, V. (1997). Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63(9), 33673373.CrossRefGoogle Scholar
Pain, C.F., Clarke, J.D.A., & Thomas, M. (2007). Inversion of relief on Mars. Icarus 190, 478491.CrossRefGoogle Scholar
Paulson, A., Green, W. & Rowland, C. (2003). Analog pressurized rover design MDRS engineering. Am. Astronaut. Soc. Sci. Technol. Ser. 107, 299311.Google Scholar
Petersen, S.M. & Pack, R.T. (1982). Paleoenvironments of the upper Jurassic Summerville formation near Capitor Reef National Park, Utah. Brigham Young Univ. Geol. Stud. 12, 1325.Google Scholar
Poulet, F. et al. (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623627.CrossRefGoogle ScholarPubMed
Prescott, L.M., Harley, J.P. & Klein, D.A. (2005). Microbiology, 6th edn. McGraw-Hill, New York, p. 206.Google Scholar
Ramasamy, K., Kamaludeen, & Banu, S. (2007). Bioremediation of Metals: Microbial Processes and Techniques. In Environmental Bioremediation Technologies, ed. Singh, S. & Tripathi, R., pp. 173218. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Reyer (1983). Transgressive-regressive cycles and the occurrence of coal in some Upper Cretaceous strata of Utah. Geology 11, 207210.Google Scholar
Richardson, C.D., Hinman, N.W. & Scott, J.R. (2009). Effect of thenardite on the direct detection of aromatic amino acids: implications for the search for life in the solar system. Int. J. Astrobiol. 8, 291300.CrossRefGoogle Scholar
Saeki, K., & Sakai, M. (2009). The influence of soil organic matter on DNA adsorptions on andosols. Microbes Environ. 24(2), 175179.CrossRefGoogle ScholarPubMed
Sarrazin, P., Blake, D., Feldman, S., Chipera, S., Vaniman, D. & Bish, D. (2005). Field deployment of a portable XRD/XRF instrument on Mars analog terrain. Adv. X-ray Anal. 48, 194203.Google Scholar
Schulte, E.E. & Eik, K. (1988). Recommended sulfate-sulfur test. Recommended chemical soil test procedures for north central region. North Dakota Agricultural Experimental Station Bulletin No. 499 (revised), p. 1719.Google Scholar
Shiro, B.R. & Ferrone, K.L. (2010). In situ geophysical exploration by humans in Mars analog environments. In 41st Lunar and Planetary Science Conference, Abstract 2052.Google Scholar
Stoker, C.R., Zent, A., Catling, D.C., Douglas, S., Marshall, J.R., Archer, D., Clark, B., Kounaves, S.P., Lemmon, M.T., Quinn, R. et al. (2010a). The habitability of the Phoenix landing site. J. Geophys. Res. 115, E00E20, doi:10.1029/2009JE003421.Google Scholar
Stoker, C.R., Zavaleta, J., Bell, M., Direto, S., Foing, B., Blake, D. & Kim, S. (2010b). Drilling on the Moon and Mars: developing the science approach for subsurface exploration with human crews. In 41st Lunar and Planetary Science Conference, Abstract 2697.Google Scholar
Stokes, W.L. (1988). The geology of Utah, Utah Museum of Natural History, University of Utah Occasional Paper No. 6.Google Scholar
Strapoc, D., Picardal, F.W., Turich, C., Schaperdoth, I., Macalady, J.L., Lipp, J.S., Lin, Y.-S., Ertefai, T.F., Schubotz, F., Hinrichs, K.-U. et al. (2008). Methane-producing microbial community in a coal bed of the Illinois Basin. J. Appl. Environ. Microbiol. 74, 24242432.CrossRefGoogle Scholar
Sullivan, W.T. & Morrison, D. (2008). Teaching Astrobiology to Undergraduate and Graduate Students. Astrobiology 8(2), 456460. doi:10.1089/ast.2008.1259.CrossRefGoogle Scholar
Thiel, C., Ehrenfreund, P., Foing, B.F., Pletser, V. & Ullrich, O. (2011). PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. Int. J. Astrobiol. Special Issue, in press.CrossRefGoogle Scholar
Tosca, N.J. & McLennan, S.M. (2006). Chemical divides and evaporate assemblages on Mars. Earth Planet. Sci. Lett. 241, 2131.CrossRefGoogle Scholar
Truillo, K.C. (2006). Clay mineralogy of the Morrison formation (upper Jurassic- Lower Cretaceous) and it use in long distance correlation and paleoenvironmental analysis. In Paleontology and Geology of the Upper Jurassic Morrison Formation, ed. Foster, J.R. & Lucas, S.G., New Mexico Museum of Natural History and Science Bulletin No. 36.Google Scholar
Ulicny, D. (1999). Sequence stratigraphy of the Dakota formation (Cenomanian), southern Utah: interplay of ecstasy and tectonics in a foreland basin. Sedimentology 46, 807836.CrossRefGoogle Scholar
Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., & Reysenbach, A.L. (1999). Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65(10), 43754384.Google Scholar
Weeks, A., Thompson, M., & Sherwood, A. (1954). Navajoite, a new vanadium oxide from Arizona. Science 119(3088), 326327.CrossRefGoogle ScholarPubMed
Whittig, L.D., Deyo, A.E. & Tanji, K.K. (1982). Evaporite mineral species in Mancos Shale and salt efflorescence, upper Colorado River basin. Soil Sci. Soc. Am. J. 46, 645651.CrossRefGoogle Scholar
Williams, P. & Hackman, R. (1971). Geology of the Salina quadrangle, Utah, USGS Geological Map I-591-A.Google Scholar
Williams, R.M.E., Irwin, R.P. & Zimbelman, J.R. (2009). Evaluation of paleohydrologic models for terrestrial inverted channels: Implications for application to Martian sinuous ridges. Geomorphology 107, 300315.CrossRefGoogle Scholar
Wood, N.B. & Clarke, J.D.A. (2004). Strategies for investigating Martian microenvironments for evidence of life: the expedition one experience. In Mars Expedition Planning, ed. Cockell, C.C., 89102. American Astronautical Society – Science and Technology Series 107. Univelt, San Diego.Google Scholar
Young, R.C. (1960). Dakota Group of the Colorado Plateau. Bull. Am. Assoc. Pet. Geologists 44, 158194.Google Scholar
Zhou, J., Bruns, M.N. & Tiedje, J.M. (1996). DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62(2), 316322.CrossRefGoogle ScholarPubMed
Zubin, R., Wagner, R. & Clark, A.C. (1997). The Case for Mars: The Plan to Settle the Red Planet and Why We Must. Free Press.Google Scholar
Zubrin, R., Baker, D. & Gwynne, O. (1991). Mars direct: a simple, robust, and cost-effective architecture for the space exploration initiative, AIAA 91-0326, 29th Aerospace Science Conference, Reno, NV, January 1991.CrossRefGoogle Scholar