Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-09-01T07:19:34.446Z Has data issue: false hasContentIssue false

White Dwarf Formation in Two-Body Systems: Sirius AB, Procyon AB, 40 Eri BC AND Stein 2051 AB

Published online by Cambridge University Press:  12 April 2016

Terry P. Roark*
Affiliation:
Department of Astronomy Ohio State University

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The orbital histories of the systems Sirius AB, Procyon AB, 40 Eri BC and Stein 2051 AB are examined. It is assumed that the changes in the orbital elements are a direct result of mass loss from the white dwarf precursor component. This loss is considered to be isotropic and no exchange between the components is allowed. These histories, coupled with observed atmospheric abundances, theoretical ages and cooling times lead to the conclusion that stars as massive as 10M can be white dwarf progenitors. Indeed, in the case of Sirius B, there is evidence that the progenitor mass was not less than 8M and that the star did not lose mass in an explosive manner.

Resumen

Resumen

Se examinan las historias orbitales de los sistemas Sirio AB, Proción AB, 40 Eri BC y Stein 2051 AB. Se supone que los cambios en los elementos orbitales son el resultado directo de la pérdida de masa de la componente progenitora de la enana blanca.

La suposición de que esta pérdida de masa es isotrópica y que no hay intercambio de masa entre las componentes, junto con las historias orbitales, las abundancias atmosféricas observadas, edades teóricas y tiempos de enfriamiento nos llevan a la conclusión que estrellas tan masivas como 10M pueden ser progenitoras de enanas blancas. En efecto, en el caso de Sirio B hay evidencia que la masa de la progenitora no era menor de 8M y que la estrella no perdió masa en forma explosiva.

Type
Session 4
Copyright
Copyright © Otto G. Franz and Paris Pismis 1977

References

Eggen, O. 1960, M.N.R.A.S., 120, 563.Google Scholar
Greenstein, J. 1948, Ap. J., 107, 151.Google Scholar
Hadjidemetriou, J. D. 1963, Icarus, 2, 440.Google Scholar
Iben, I. Jr. 1967, Ann. Rev. Astr. and Ap., 5, 571.Google Scholar
Koester, D. 1972, Astron. and Astrophys., 16, 459.Google Scholar
Latham, D. 1970, Smithson. Inst. Astrophys. Obs. Spec. Rep., 321.Google Scholar
Paczyński, B. 1971, Ann. Rev. Astr. and Ap., 9, 183.CrossRefGoogle Scholar
Powell, A. L. T. 1970, M.N.R.A.S., 148, 477.Google Scholar
Ralston, A., and Wilf, H. S. 1960, Mathematical Methods for Digital Computers (New York/London: Wiley).Google Scholar
Reimers, D. 1973, Astron. and Astrophys., 24, 79.Google Scholar
Strand, K. Aa. 1977, Rev. Mex. Astron. Astrof., 3, 93.Google Scholar