Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T16:02:08.149Z Has data issue: false hasContentIssue false

Warm and Cold Gas in Galactic Nuclei: The Near-IR/Millimeter Connection in NGC 253

Published online by Cambridge University Press:  12 April 2016

Paul P. Van Der Werf
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-8046 Garching bei München, Germany
M. Cameron
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-8046 Garching bei München, Germany
R. Genzel
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-8046 Garching bei München, Germany
M. Blietz
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-8046 Garching bei München, Germany
A. Krabbe
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-8046 Garching bei München, Germany
D. A. Forbes
Affiliation:
Lick Observatory, University of California, Santa Cruz, CA 95064, U.S.A.
M. J. Ward
Affiliation:
Oxford University, Department of Astrophysics, Keble Road, Oxford 0X1 3RH, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the use of seeing-limited near-IR spectroscopic imaging combined with high resolution millimeter and submillimeter wave observations, as a diagnostic in the study of the nuclear interstellar medium in starburst galaxies and active galactic nuclei. As an example, recent near-IR spectroscopic imaging of the starburst galaxy NGC 253 is analyzed. It is shown that the central ~ 100 pc of NGC 253 contains a number of giant star forming complexes, the stellar content of which is at least as large as that of the 30 Dor region in the LMC. We suggest the use of the [FeII]/Brγ ratio as an approximate age indicator for such complexes. The warm component of the nuclear molecular medium in NGC 253 detected in submillimeter CO spectra and in near-IR rovibrational lines of H2 is probably heated by stellar UV radiation or slow shocks in star forming regions, rather than by supernova remnant shocks. There are indications that molecular material is being removed from the nuclear region by the “superwind” observed in optical emission lines.

Type
3. Astronomical Results and Prospects
Copyright
Copyright © Astronomical Society of the Pacific 1994

References

Canzian, B., Mundy, L.G., and Scoville, N.Z. 1988, ApJ, 333, 157 Google Scholar
Carlstrom, J.E. 1990, in The evolution of the interstellar medium, ed. Blitz, L., Astronomical Society of the Pacific Conference Series Google Scholar
Doyon, R., Joseph, R.D., and Wright, G.S. 1991, in Astrophysics with infrared arrays, ed. Elston, R., Astronomical Society of the Pacific Conference Series Google Scholar
Draine, B. T., Robeige, W.G., and Dalgarno, A. 1983, ApJ, 264, 485 Google Scholar
Draine, B.T., and Woods, D.T. 1990, ApJ, 363, 464 Google Scholar
Fabbiano, G., and Trinchieri, G. 1984, ApJ, 286, 491 CrossRefGoogle Scholar
Forbes, D.A., Ward, M.J., and DePoy, D.L. 1992, ApJ, 385, L31 Google Scholar
Forbes, D.A., Ward, M.J., Rotaciuc, V., Blietz, M., Genzel, R., Drapatz, S., Van der Werf, P.P., and Krabbe, A. 1993, ApJ, in preparationGoogle Scholar
Harris, A.I., Hills, R.E., Stutzki, J., Graf, U.U., Russell, A.P.G., and Genzel, R. 1991, ApJ, 382, L75 Google Scholar
Heekman, T.M., Armus, L., and Miley, G.K. 1990, ApJS, 74, 833 Google Scholar
Irwin, J.A., and Sofue, Y. 1992, ApJ, 396, L75 CrossRefGoogle Scholar
McCarthy, P.J., Heekman, T.M., and Van Breugel, W. 1987, AJ, 93, 264 Google Scholar
McKee, C. F., Hollenbach, D.J., Seab, C.G., and Tielens, A.G.G.M. 1987, ApJ, 318, 674 Google Scholar
Moorwood, A.F.M., and Oliva, E. 1991, The Messenger, 63, 57 Google Scholar
Oliva, E., and Moorwood, A.F.M. 1990, ApJ, 348, L5 Google Scholar
Oliva, E., Moorwood, A.F.M., and Danziger, I.J. 1989, A&A, 214, 307 Google Scholar
Rotaciuc, V. 1992, Ph.D. Thesis, University of Munich Google Scholar
Seab, C.G., and Shull, J.M. 1983, ApJ, 275, 652 CrossRefGoogle Scholar
Stapelfeldt, K., Beichman, C.A., Hester, J., Scoville, N.Z., and Gautier, T.N. 1991, ApJ, 371, 226 Google Scholar
Sternberg, A. 1992, in The Nearest Active Galaxies, eds. Beekman, J. and Colina, L., in pressGoogle Scholar
Sternberg, A., and Dalgarno, A. 1989, ApJ, 338, 197 CrossRefGoogle Scholar
Telesco, C.M., and Harper, D.A. 1980, ApJ, 235, 392 Google Scholar
Turner, B. E. 1985, ApJ, 299, 312 Google Scholar
Ulvestad, J.S., and Antonucci, R.R.J. 1991, AJ, 102, 875 Google Scholar
Van der Werf, P.P., Genzel, R., Krabbe, A., Blietz, M., Lutz, D., Drapatz, S., Ward, M.J., and Forbes, D.A. 1993, ApJ, in pressGoogle Scholar
Wall, W.F., Jaffe, D.T., Israel, F.P., and Bash, F.N. 1991, ApJ, 380, 384 Google Scholar
Waller, W.H., Kleinmann, S.G., and Ricker, G.R. 1988, AJ, 95, 1057 Google Scholar