Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T19:30:28.048Z Has data issue: false hasContentIssue false

The Use of Asteroids for Determinations of Masses and other fundamental constants

Published online by Cambridge University Press:  12 April 2016

Eugene Rabe*
Affiliation:
Cincinnati Observatory

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This report does not attempt to review all past and present work using asteroids for determinations of planetary masses and other fundamental constants. This would be a very large undertaking, and too extensively outside of the scope of a colloquium devoted to physical studies of minor planets. It seems preferable to concentrate more on principles involved, while mentioning only some of the various results obtained. At the same time, it will be appropriate to take note of the changed situation resulting from the recent development of certain modern methods and facilities that make it possible to determine some of the constants more accurately in other ways, thus partly eliminating the once dominant role of the minor planets.

Type
Part I-Observations
Copyright
Copyright © NASA 1971

References

Ash, M.E., Shapiro, I.I., and Smith, W.B. 1967, Astronomical Constants and Planetary Ephemerides Deduced From Radar and Optical Observations. Astron. J. 72, 338350.Google Scholar
Bauschinger, J. 1920, Bestimmung und Zusammenhang der Astronomischen Konstanten. Encyklopädie der Mathematischen Wissenschaften, vol. 6, pt. 2, pp. 844895.Google Scholar
Bec, A. 1969, Detérmination de la Masse de Jupiter par l’Étude du Mouvement de son Neuvième Satellite. Astron. Astrophys. 2, 381387.Google Scholar
Böhme, S., and Fricke, W. 1965, Astronomical Constants. A Survey of Determined Values. Proc. IAU Symp. no. 21, The System of Astronomical Constants, pp. 269293.Google Scholar
Brouwer, D. 1935, On the Determination of Systematic Corrections to Star Positions From Observations of Minor Planets. Astron. J. 44, 5763.Google Scholar
Clemence, G.M. 1948, The Value of Minor Planets in Meridian Astronomy. Astron. J. 54, 1011.Google Scholar
Clemence, G.M. 1966, Masses of the Principal Planets. IAU Trans. XIIB, 609614.Google Scholar
Harkness, W. 1891, The Solar Parallax and Its Related Constants, Including the Figure and Density of the Earth. Washington Observations for 1885, app. III. Washington.Google Scholar
Hill, G.W. 1907, On the Derivation of the Mass of Jupiter From the Motion of Certain Asteroids. Collected Mathematical Works, vol. 1, pp. 105108. (Johnson Reprint Corp., New York, 1965.)Google Scholar
Hinks, A.R. 1909, Solar Parallax Papers no. 7: The General Solution From the Photographic Right Ascensions of Eros, at the Opposition of 1900. Mon. Notic. Roy. Astron. Soc. 69, 544567.Google Scholar
Hinks, A.R. 1910, Solar Parallax Papers no. 9: The General Solution From the Micrometrie Right scensions of Eros, at the Opposition of 1900. Mon. Notic. Roy. Astron. Soc. 70, 588603.Google Scholar
Jackson, E.S. 1968, Determination of the Equinox and Equator From Meridian Observation of the Minor Planets. Astronomical Papers of the American Ephemeris, vol. 20, pt. l, pp. 1131.Google Scholar
Klepczynski, W.J. 1969, The Mass of Jupiter and the Motion of Four Minor Planets. Astron. J. 74, 774775.CrossRefGoogle Scholar
Lieske, J.H. 1968, Mass of the Earth-Moon System From Observations of Eros, 1893–1966. Astron. J. 73, 628643.Google Scholar
Lieske, J. 1970, On the Secular Change of the Obliquity of the Ecliptic. Astron. Astrophys. 5, 90101.Google Scholar
Lieske, J.H., and Null, G.W. 1969, Icarus and the Determination of Astronomical Constants. Astron. J. 74, 297307.CrossRefGoogle Scholar
Marsden, B.G. 1970, On the Relationship Between Comets and Minor Planets. Astron. J. 75, 206217.Google Scholar
Noteboom, E. 1921, Beiträge zur Theorie der Bewegung des Planeten 433 Eros. Astron. Nachr. 214, 153170.Google Scholar
Null, G.W. 1967, A Solution for the Sun-Mars Mass Ratio Using Mariner IV Doppler Tracking Data. Astron. J. 72, 12921298.Google Scholar
Petri, W. 1958, Praktische Auswertung von Meridianbeobachtungen kleiner Planeten. Astron. Nachr. 284, 219226.CrossRefGoogle Scholar
Pierce, D.A. 1971, Star Catalog Corrections Determined From Photographic Observations of Selected Minor Planets. Astron. J. 76, 177181.CrossRefGoogle Scholar
Rabe, E. 1950, Derivation of Fundamental Astronomical Constants From the Observations of Eros During 1926–1945. Astron. J. 55, 112126.Google Scholar
Rabe, E. 1967, Corrected Derivation of Astronomical Constants From the Observations of Eros 1926–1945. Astron. J. 72, 852855.Google Scholar
Rabe, E., and Francis, M.P. 1967a, Motion of Eros and the Astronomical Unit. Astron. J. 72, 316317.Google Scholar
Rabe, E., and Francis, M.P. 1967b, The Earth+Moon Mass and Other Astronomical Constants From the Eros Motion 1926–1965. Astron. J. 72, 856864.Google Scholar
Russell, H.N. 1900, The General Perturbations of the Major Axis of Eros by the Action of Mars. Astron. J. 21, 2528.Google Scholar
Schmeidler, F. 1958, Über die Bestimmung absoluter Koordinaten-systeme mit Hilfe von Planetenbeobachtungen. Astron. Nachr. 284, 205218.CrossRefGoogle Scholar
Scholl, H. 1971, Correction to the Mass of Jupiter Derived From the Motion of 153 Hilda, 279 Thüle, and 334 Chicago. Proc. IAU Colloq. no. 9, The I.A.U.-System of Astronomical Constants (Heidelberg, 1970). Celest. Mech., in press.Google Scholar
Schubart, J., and Zech, G. 1967, Determination of the Astronomical Unit by the Dynamical Method. Nature 214, 900901.Google Scholar
Schubart, J. 1969, The Minor Planet 1221 Amor. Astron. Astrophys. 2, 173181.Google Scholar
Spencer Jones, H. 1941, The Solar Parallax and the Mass of the Moon From Observations of Eros at the Opposition of 1931. Mem. Roy. Astron. Soc. 66, pt. 2, 166.Google Scholar
Witt, G. 1933, Baryzentrische Ephemeride des Planeten 433 Eros für die Perihelopposition 1930–1931. Astron. Abhand. Ergänzungsh. Astron. Nachr. 9(1), 130.Google Scholar