Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-08-01T08:38:23.471Z Has data issue: false hasContentIssue false

Radio Emission from Supernova Remnants

Published online by Cambridge University Press:  12 April 2016

Richard G. Strom*
Affiliation:
Netherlands Foundation for Research in Astronomy, Radiosterrenwacht, Dwingeloo, The Netherlands

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most of the supernova remnants known in the Galaxy have only been detected at radio frequencies. The reason for this is absorption in the Galactic plane at both optical and X-ray wavelengths. All available evidence suggests that the shock fronts which accompany supernova remnants accelerate enough cosmic rays to GeV energies to produce readily detectable radio emission. This is fortunate, for it enables us to study remnants throughout the Galactic disk, although existing catalogues may be anywhere from 50 to 90 % incomplete. Cosmic rays and the magnetic fields in which they gyrate are the essential ingredients for producing the synchrotron radiation which is observed at radio frequencies. Various methods for estimating magnetic field strengths can be applied to a small number of remnants, and produce values not far from those based upon equipartition between the energy contents of particles and fields. From this, the particle energy content is derived for a number of objects.

Type
Supernova Remnants
Copyright
Copyright © Cambridge University Press 1996

References

Albinson, J. S., Tuffs, R. J., Swinbank, E. & GuU, S. F. (1986). MNRAS, 219, 427 Google Scholar
Berkhuijsen, E. M. (1986). A&A, 166, 257 Google Scholar
Braun, R. (1987). AkA, 171, 233 Google Scholar
Caswell, J. L. & Lerche, I. (1979). MNRAS, 187, 201 Google Scholar
Dickel, J. R., Van Breugel, W. J. M. & Strom, R. G. (1991). AJ, 101, 2151 Google Scholar
Frail, D. A. & Kulkarni, S. R. (1991). Nature, 352, 785 Google Scholar
Green, D. A. (1984). MNRAS, 209, 449 Google Scholar
Green, D. A. (1990). AJ, 100, 1927 Google Scholar
Green, D. A. (1991). PASP, 103, 209 Google Scholar
Green, D. A. & Scheuer, R A. G. (1992). MNRAS, 258, 833 Google Scholar
Haslam, C. G. T., Salter, C. J., Stoffel, H. & Wilson, W. E. (1982). A&A, 47, 1 Google Scholar
Matsui, Y., Long, K. S., Dickel, J. R. & Greisen, E. W. (1984). ApJ, 287, 295 Google Scholar
Milne, D. K. (1987). Aust. J. Phys., 40, 771 Google Scholar
Reich, W., Fürst, E., Reich, P. & Reif, K. (1990). AAS, 85, 633 Google Scholar
Seward, F. D. (1990). ApJS, 73, 781 Google Scholar
Strom, R. G. (1987). ApJ, 319, L103 Google Scholar
Strom, R. G. & Greidanus, H. (1992). Nature, 358, 654 Google Scholar
Taylor, J. H. & Cordes, J. M. (1993). ApJ, 411, 674 Google Scholar
Van den Bergh, S. & Tammann, G. A. (1991). ARA&A, 29, 363 Google Scholar