Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T09:05:59.405Z Has data issue: false hasContentIssue false

Optical Design with the Schmidt Concept: 1) Ground-Based Development: 2) The Space Schmidt Project for the 1990's ?

Published online by Cambridge University Press:  12 April 2016

G. Lemaître*
Affiliation:
Observatoire de Marseille, Place Le Verrier, 13248 Marseille, France

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The basic principle of the camera described by Bernard Schmidt in 1932 is that a single concave mirror with a stop at its center of curvature has no unique axis and therefore yields equally good images at all points of its yield. The field is curved, and to correct the spherical aberration produced by the mirror, Schmidt introduced, in the stop at the center of curvature of the mirror, a thin non spherical corrector plate of glass. Around 1930 at the Hamburg Observatory and in spite of many difficulties, it was Schmidt's genius as an optician that succeeded - after several judiciously interpreted trials - in figuring a corrector plate by elastic relaxation, and thus demonstrated the optical performance of this new generation of instruments.

Type
Research Article
Copyright
Copyright © Reidel 1984

References

Bowen, I.S.: 1952, Ap. J. 116, 1.CrossRefGoogle Scholar
Bowen, I.S. 1960, Telescopes, Stars, and Stellar System, Vol. 1, ed. Kuiper, , p. 58.Google Scholar
Caratheodory, C.: 1940, Hamburg. Math. Einzelschr., 28.Google Scholar
Carruthers, G.R.: 1979, Advances In Electronics and Electron Physics, 52, 283.CrossRefGoogle Scholar
Couder, A.: 1940, Comptes-Rendus, Paris, 210, 327.Google Scholar
Epstein, L.C.: 1967, Publ. Austron. Soc. Pacific, 79, 132.CrossRefGoogle Scholar
Fehrenbach, C., Burnage, R.: 1981, Astron. Astrophys. Suppl. Series, 43, 297.Google Scholar
Griboval, P.: see this Colloquium.Google Scholar
Henize, K.G.: 1963, NASA Proposol, Northwestern Univ.Google Scholar
Kerber, , see in Chretien, H.: 1958, Le Calcul des Combinaisons Optiques, Ed. Sennas, , Paris, 346.Google Scholar
Korsch, D.: 1974, Appl. Optics, 13, 2005.Google Scholar
Lemaître, G.: 1976, J. Opt. Soc. Am. 66, 12, 1334.Google Scholar
Lemaître, G. 1977, Astron. Astrophys. 59, 249.Google Scholar
Lemaître, G. 1979, Comptes, Rendus, 288 B, 297.Google Scholar
Lemaître, G. 1980, Comptes, Rendus, 290 B, 171.Google Scholar
Lemaître, G. 1981, Current Trends in Optics, ICO 12 Conference, Taylor et Francis, London 131.Google Scholar
Linfoot, E.H.: 1945, Proc. Phys. Soc., London, 57, 209.Google Scholar
Linfoot, E.H. 1949, M.W.R.A.S. 109, 279.Google Scholar
Linfoot, E.H., Wolf, E.: 1949, J. Opt. Soc. Am. 39, 752.Google Scholar
Schmidt, B.: 1932, Mitt. Hamburger Sternw., Bergedorf, 7, 36, 15.Google Scholar
Schroeder, D.J.: 1977, Appt. Optics, 17, 141.Google Scholar
Servan, B.: 1976, IAU Colloquium n° 40, Paris, 1.Google Scholar
Stromgren, B.: 1935, Vierteljahrsschr. Astr. Gessellsch., 70, 65.Google Scholar
Wray, J.D., O’Callaghan, F.G.: 1969, SPIE, Santa Barbara.Google Scholar
Wray, J.D., Smith, H.J., Henize, K.G., Carruthers, G.R.: 1982, SPIE, 332, 141.Google Scholar