Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-20T00:42:28.785Z Has data issue: false hasContentIssue false

Modelling the Soft X-Ray and EUV Emission in Classical Novae: EUVE and ROSAT Observations of V1974 Cygni

Published online by Cambridge University Press:  12 April 2016

Guy S. Stringfellow
Affiliation:
Center for EUV Astrophysics, University of California, 2150 Kittredge Street, Berkeley, CA 94720-5030, USA Present Address: Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802-6305, USA
Stuart Bowyer
Affiliation:
Center for EUV Astrophysics, University of California, 2150 Kittredge Street, Berkeley, CA 94720-5030, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have conducted an extensive analysis of the observability of Classical Novae with the EUVE Lex/B and Al/Ti/C detectors. Predicted count rates have been computed using optically thin, isothermal plasma models for solar and metal-rich compositions, and hot ONeMg white dwarf model atmospheres. We find EUVE to be quite sensitive to both the EUV and soft X-ray emission emitted by the underlying hot white dwarf during novae outbursts, except for the coolest temperatures with very high intervening hydrogen column density. These results are used to interpret the emission detected during the EUVE all-sky survey of Nova Cygni 1992 (≡ V1974 Cyg), 279–290 days after visual maximum. We find the best fit to the observed emission from V1974 Cyg arises from a hot ONeMg white dwarf with surface temperature ~ 4 × 105 K and a mass of ~1.2 M, and derive an interstellar hydrogen column density of ~ 3 × 1021 cm−2. Virtually all this emission arises from supersoft X-rays rather than the EUV. We also report the detection of V1974 Cyg with the EUVE Deep Survey detector at 549 days after visual maximum. This observation is compatible with the above properties, indicating that the mechanism responsible for the soft X-ray emission, connected with the underlying white dwarf, had not yet entirely turned off. We also present analysis of a ROSAT PSPC observation which is contemporaneous with the EUVE survey observations; this independently confirms the high column density we derived from the EUVE survey observation. Light curves for the EUVE and ROSAT observations are presented. Statistical tests for variability show that all of these observations are indeed highly variable over various time scales. The EUVE survey data shows one day variations, the EUVE DS data show ~30 minute fluctuations, while the ROSAT data vary rapidly on time scales of seconds. The EUVE data shows no periodic variability on any time scale. The implications of the rapid variability are briefly discussed.

Type
VIII. Novae, X-ray Binaries
Copyright
Copyright © Kluwer 1996

References

Collins, P. 1992, IAU Circular No. 5454Google Scholar
Chocol, D., Hric, L., Urban, Z., Komzik, R., Grygar, J., & Papousek, J. 1993, A&A, 277, 103 Google Scholar
Harrison, T.E. & Stringfellow, G.S. 1994, ApJ, 437, 827 CrossRefGoogle Scholar
Hayward, T.L., Gehrtz, R.D., Miles, J.W., & Houk, J.R. 1992, ApJ, 401, LlOl CrossRefGoogle Scholar
MacDonald, J. & Vennes, S. 1991, ApJ, 373, L51 Google Scholar
Paresce, F., Livio, M., Hack, W., & Korista, K. 1995, A&A, in pressGoogle Scholar
Saizar, P. & Ferland, G.J. 1994, ApJ, 425, 755 Google Scholar
Stringfellow, G.S. & Bowyer, S. 1993a, IAU Circular No. 5803Google Scholar
Stringfellow, G.S. & Bowyer, S. 1993b, BAAS, 25, 1250 Google Scholar
Stringfellow, G.S. & Bowyer, S. 1994, In Interacting Binary Stars, ed. Shatter, A.W., ASP Conference Series, 37, 315 Google Scholar
Williams, R.E. 1991, ApJ, 392, 99 CrossRefGoogle Scholar