Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T06:16:57.871Z Has data issue: false hasContentIssue false

Magnetic Helicity and Filaments

Published online by Cambridge University Press:  12 April 2016

M.A. Berger*
Affiliation:
Mathematics, University College London, London WC1E 6BT, U.K.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some of the most dramatic images of prominences show helical structure. Helical structure, as well as other structural features such as twist, shear, and linking, can be quantified using helicity integrals. This paper reviews how the calculation of helicity may be applied to prominence models. Recent observations indicate that the sign of helicity in an active region depends on which hemisphere the region is in. The source of this asymmetry is an important problem in solar physics. The total helicity of each hemisphere obeys a Poynting-like theorem which describes how helicity is transferred across the photosphere and the equator. Estimating this helicity transfer may help us in understanding the helicity balance of the sun.

Type
Filaments and Their Environment
Copyright
Copyright © Astronomical Society of the Pacific 1998

References

Berger, M.A. and Field, G.B. 1984, J. Fluid Mechanics, 147, 133 Google Scholar
Berger, M.A. 1984, Geophys. Astrophys. Fluid Dynamics, 34, 265 Google Scholar
Dixon, A., Berger, M.A., Browning, P. and Priest, E.R. 1989, 225, 156 Google Scholar
Elsasser, W.M. 1956, Rev. Modern Phys., 28, 135 Google Scholar
Finn, J.H. and Antonsen, T.M. 1985, Comments Plasma Phys. Contr. Fusion, 9, 111 Google Scholar
Freedman, M. and Berger, M.A. 1993, Geophys. Astrophys. Fluid Dynamics, 73, 91 Google Scholar
Heyvaerts, J. and Priest, E.R. 1984, A&A, 137, 63 Google Scholar
Hood, A. and Priest, E.R. 1979, Solar Phys., 64, 303 Google Scholar
House, L. and Berger, M.A. 1987, ApJ, 323, 406 Google Scholar
Jensen, T. and Chu, M.S. 1984, J. Plasma Phys., 25, 459 Google Scholar
Low, B.C. 1994, Phys. Plasmas, 1, 1684 Google Scholar
Martin, S.F. et al. 1992, in The Solar Cycle, (ed.) Harvey, K.L., ASP Conf. Ser. Vol. 27, San Francisco, p. 53 Google Scholar
Moffatt, H.K. 1969, J. Fluid Mechanics, 35, 117 Google Scholar
Moffatt, H.K. and Ricca, R.L. 1992, Proc. Royal Soc. Lon. A, 439, 411 Google Scholar
Pevtsov, A.A., Canfield, R.C. and Metcalf, T.R. 1994, ApJ, 440, L109 Google Scholar
Priest, E.R., Hood, A.W. and Anzer, U. 1989, ApJ, 344, 1010 Google Scholar
Pneuman, G.W. 1983, Solar Phys., 88, 219 Google Scholar
Ricca, R.L. 1997, Solar Phys., 172, 241 Google Scholar
Rust, D. 1994, Geophys. Res. Lett., 21, 241 Google Scholar
Rust, D. 1997 in Coronal Mass Ejections, (eds.) Crooker, N., Joselyn, J., and Feynman, J., AGU, G.M. 99, Washington, D.C., p. 119 Google Scholar
Rust, D. and Kumar, A. 1994, Solar Phys., 155, 69 Google Scholar
Rust, D. and Kumar, A. 1996, ApJ, 464, L199 Google Scholar
Ruzmaikin, 1996 Geophys. Res. Lett., 23, 2649 Google Scholar
Seehafer, N. 1990, Solar Phys., 125, 219 Google Scholar
Seehafer, N. 1996, Phys. Rev. E, 53, 1283 Google Scholar
Song, Y. and Lysak, R.L. 1989, J. Geophys. Res., 94, 5273 Google Scholar
van Ballegooijen, A.A. and Martens, P.C.H. 1990, ApJ, 361, 283 Google Scholar
Velli, M., Lionello, R. and Einaidi, G. 1997, Solar Phys., 172, 257 Google Scholar
Vršnak, B., Ruždjak, V. and Rompolt, B. 1991, Solar Phys., 136, 151 Google Scholar
Woltjer, L. 1958, Proc. Natl. Acad. Sci. USA, 44, 489 Google Scholar
Wright, A. and Berger, M.A. 1989, J. Geophys. Res., 94, 1295 Google Scholar