Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T20:58:37.281Z Has data issue: false hasContentIssue false

Jovian magnetospheric and auroral effects of the SL9 impacts

Published online by Cambridge University Press:  02 August 2016

Wing-Huen IP*
Affiliation:
Max-Planck-Institut för Aeronomie, D-37191 Katlenburg-Lindau, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The collisions of comet Shoemaker-Levy 9 with Jupiter have produced many surprising auroral and magnetospheric phenomena. The energy released during the passage of the cometary dust comas through the jovian magnetosphere and at atmospheric explosion could lead to impulsive particle acceleration, enhanced radial diffusive transport, and the establishment of field-aligned current systems connecting the comet impact sites to their respective magnetic conjugate points. Some of the observed effects such as the abrupt increase of decimetric radio emission, the excitation of infrared emissions and mid-latitude auroral emission in the ultraviolet, could be interpreted within the framework of these mechanisms. Several auroral features like the X-ray outbursts and short-term variations in the UV emissions are more puzzling and require further observation of jovian auroral dynamics in these wavelength ranges in coordination with the Galileo mission.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Acuna, M. H., Behannon, K. W. & Connerney, J. E. P. 1983 Jupiter's magnetic field and magnetosphere. In Physics of the Jovian Magnetosphere, (ed. Dessler, A. J.), pp. 150, Cambridge University Press.Google Scholar
Ballester, G. E., Harris, W. M., Gladstone, G. R. et al. 1995 Far-ultraviolet emissions from the impact sites of comet P/Shoemaker-Levy 9 with Jupiter. Geophys. Res. Lett. 22, 2425.CrossRefGoogle Scholar
Belcher, J. W. 1983 The low-energy plasma in the Jovian magnetosphere, in Physics of the Jovian Magnetosphere, (ed. Dessler, A. J.) pp. 68105, Cambridge University Press.Google Scholar
Bolton, S. J. and Thorne, R. M. 1995 Assessment of mechanisms for Jovian synchrotron variability associated with comet SL-9. Geophys. Res. Lett. 22, 1813.Google Scholar
Brecht, S. H., Pesses, M., Lyon, J. G., Gladd, N. T. and McDonald, S. W. 1995 An explanation of synchrotron radiation enhancement following the impact of Shoemaker-Levy 9 with Jupiter. Geophys. Res. Lett. 22, 1805.CrossRefGoogle Scholar
Brice, N. and Ioannidis, G. A. 1970 The magnetospheres of Jupiter and earth. Icarus 13, 173.Google Scholar
Brice, N. and McDonough, T. R. 1973 Jupiter's radiation belts. Icarus 18, 206.Google Scholar
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., et al. 1979 Extreme ultarviolet observations from Voyager 1 encounter with Jupiter. Science 204, 979.Google Scholar
Brown, M. E., Moyer, E. J., Bouchez, A. H., and Spinrad, H. 1995 Comet Shoemaker-Levy 9: No effect on the Io plasma torus, Geophys. Res. Lett. 22, 1833.Google Scholar
Brown, R. A., Pilcher, C. B. and Strobel, D. F. 1983 Spectrophotometric studies of the Io torus. In Physics of the Jovian Magnetosphere, (ed. Dessler, A. J., pp. 197225. Cambridge University Press.Google Scholar
Clarke, J. T., Prangé, R., Ballester, G. E., et al. 1995 Hubble Space Telescope far-ultraviolet imaging of Jupiter during the impacts of comet Shoemaker-Levy 9. Science 267, 1302.CrossRefGoogle ScholarPubMed
Connerney, J. E. P., Baron, R., Satoh, T. and Owen, T. 1993 Images of excited at the foot of the Io flux tube in Jupiter's atmosphere. Science 262, 1035.Google Scholar
Cravens, T. E. 1994 Comet Shoemaker-Levy 9 impact with Jupiter; Aeronomical predictions. Geophys. Res. Lett. 21, 1075.Google Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., Colom, P., Jorda, L. and Lellouch, E. 1995: Carbon monoxide outgassing from comet P/Schwassmann-Wachmann 1. Icarus 115, 213.Google Scholar
De Pater, I. 1994 The effect of comet Shoemaker-Levy 9 on Jupiter synchrotron radiation. Geophys. Res. Lett. 21, 1071.Google Scholar
De Pater, I. and Goertz, C. K. 1990 Radial diffusion of energetic electrons and Jupiter's synchrotron radiation. I. Steady state solution. J. Geophys. Res. 95, 39.Google Scholar
De Pater, I. and Goertz, C. K. 1994 Radial diffusion models of energetic electrons and Jupiter's synchrotron radiation. II. Time variability. J. Geophys. Res. 99, 2271.Google Scholar
De Pater, I. and Klein, M. J. 1989 Time variability in Jupiter's synchrotron radiation. In Proc. Conference on Time Variable Phenomena in the Jovian System, pp. 139150.Google Scholar
De Pater, I., Heiles, C., Wong, M., et al. 1995 Outburst of Jupiter's synchrotron radiation following the impact of comet P/Shoemaker-Levy 9. Science 268, 1879.Google Scholar
Dessler, A. J. 1980 Mass-injection rate from Io into the Io plasma torus. Icarus 44, 291.Google Scholar
Dessler, A. J. and Hill, T. W. 1994 Some interactions between dust from comet Shoemaker-Levy 9 and Jupiter. Geophys. Res. Lett. 21, 1043.Google Scholar
Dougherty, M. K., Southwood, D. J., Balogh, A. and Smith, E. J. 1993 Field-aligned currents in the jovian magnetosphere during the Ulysses flyby. Planet. Space Sci. 41, 291.Google Scholar
Dulk, G. A. and Leblanc, Y. 1994 Changes in Jupiter's synchrotron radiation belts during and after SL-9 impacts. In Proc. European SL-9/Jupiter Workshop (eds. West, R. and Böhnhardt, H.), p. 381. ESO.Google Scholar
Dulk, G. A., Leblanc, Y., and Hunstead, R. W. 1995 Flux and images of Jupiter at 13, 22 and 36 cm before, during and after SL-9 impacts. Geophys. Res. Lett. 22, 1789.Google Scholar
Farrell, W. M., Kaiser, M. L., Desch, M. D. and MacDowall, R. J. 1994 Possible radio wave precursors associated with the comet Shoemaker-Levy 9/Jupiter impacts. Geophys. Res. Lett. 21, 1067.CrossRefGoogle Scholar
Fillius, R. 1976 The trapped radiation belts of Jupiter. In Jupiter (ed. Gehrels, T.), pp. 896927. University of Arizona Press.Google Scholar
Gehrels, N. and Stone, E C. 1983 Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation. J. Geophys. Res. 88, 5537.CrossRefGoogle Scholar
Gerard, J. C., Dols, V., Prangé, R., and Paresce, F. 1994a Morphology and time variation of the Jovian far uv. Planet. Space Sci. 42, 905.Google Scholar
Gerard, J. C., Grodent, D., Prangé, R., et al. 1994b A remarkable auroral event on Jupiter observed in the ultraviolet with the Hubble Space Telescope aurora: Hubble Space Telescope observations. Science 266, 1675.Google Scholar
Goldstein, M. L. and Goertz, C. K. 1983 Theories of radio emissions and plasma waves. In Physics of the Jovian Magnetosphere pp. 317352. Cambridge University Press.Google Scholar
Hall, D. T., Gladstone, G. R., Herbert, F., Lieu, R., and Thomas, N. 1995 Io torus EUV emissions during the comet Shoemaker-Levy 9 impacts. Geophys. Res. Lett. 22, 3441.Google Scholar
Herbert, F. 1994 The impact of comet Shoemaker-Lev 9 on the Jovian magnetosphere. Geophys. Res. Lett. 21, 1047.CrossRefGoogle Scholar
Herbert, F., Sandel, B. R. and Broadfoot, A. L. 1987 Observations of the jovian UV aurora by Voyager. J. Geophys. Res. 92, 3141.CrossRefGoogle Scholar
Hill, J. R. and Mendis, D. A. 1980 On the origin of striae in cometary dust tails. Astrophys. J. 242, 395.Google Scholar
Hill, T. W. and Dessler, A. J. 1995 Midlatitude Jovian aurora produced by the impact of comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 1817.Google Scholar
Hood, L. L. 1993 Long-term changes in jovian synchrotron radio emission: intrinsic variations or effects of viewing geometry. J. Geophys. Res. 98, 5769.Google Scholar
Horanyi, M. H. 1994 New Jovian rings. Geophys. Res. Lett. 21, 1039.Google Scholar
IP, W.-H. 1994 Time variations of the Jovian synchrotron radiation following the collisional impacts of comet Shoemaker-Levy 9. Planet. Space Sci. 42, 527.CrossRefGoogle Scholar
IP, W.-H. 1995a Time variations of the Jovian synchrotron radiation following the collisional impacts of comet Shoemaker-Levy 9: 2. flux enhancement induced by neutral atmospheric turbulence. Planet. Space Sci. 43, 221.Google Scholar
IP, W.-H. 1995b On particle acceleration by the impact-driven field-aligned current systems. Icarus, submitted.Google Scholar
IP, W.-H. and Prangé, R. 1994 On possible magnetospheric dust interactions of comet Shoemaker-Levy 9 at Jupiter. Geophys. Res. Lett. 21, 1051.Google Scholar
Kan, J. R., Akasofu, S.-I. and Lee, L. C. 1983 A dynamo theory of solar flares. Solar Phys. 84, 153.Google Scholar
Kellogg, P. J. 1994 Plasma effects on the interaciton of a comet with Jupiter. Geophys. Res. Lett. 21, 1055.Google Scholar
Klein, M. J., Gulkis, S., Bolton, S. J. 1995 Changes in Jupiter's 13-cm synchrotron radio emission following the impact of comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 1797.Google Scholar
Knight, S. 1973 Parallel electric field. Planet. Space Sci. 21, 741.Google Scholar
Lanzerotti, L. J., Armstrong, T. P., MacLennan, C. G., et al. 1993 Measurements of hot plasmas in the magnetosphere of Jupiter. Planet. Space Sci. 41, 893.Google Scholar
Leblanc, Y. and Dulk, G. A. 1995 Changes in brightness of Jupiter's radiation belt at 13 and 22 cm during and after impacts of comet SL-9. Geophys. Res. Lett. 22, 1793.Google Scholar
Livengood, T. A., Strobel, D. F. and Moos, H. W. 1990 Jupiter's north and south polar aurorae with IUE data. J. Geophys. Res. 95, 10375.Google Scholar
McGrath, M. A., Hall, D. T., Matheson, P. L., et al. 1995. Response of the Io plasma torus to comet Shoemaker-Levy 9. Science 267, 1313.Google Scholar
McGregor, P. J., Nicholson, P. D. and Allen, M. G. 1995 CASPIR observations of the collision of comet Shoemaker-Levy 9. Icarus submitted.Google Scholar
Mendis, D. A., Hill, J. R., Houpis, H. F., and Whipple, E. C. 1981 On the electrostatic charging of the cometary nucleus. Astrophys. J. 249, 787.Google Scholar
Metzger, A. E., Gilman, D. A., Luthey, J. L. et al. 1983 The detection of x-rays from Jupiter. J. Geophys. Res. 88, 7731.Google Scholar
Miller, S., Achilleos, N., Dinelli, B. M., et al. 1995 The effect of the impact of comet Shoemaker-Levy 9 on Jupiter's aurora. Geophys. Res. Lett. 22, 1629.Google Scholar
Moses, J. 1992 Meteoroid ablation in Neptune's atmosphere. Icarus 99, 368.Google Scholar
Prangé, R., Rego, D. and Gerard, J. C. 1995a Auroral Lyman alpha and H2 bands from the giant planets 2. Effect of the anisotropy of the precipitating particles on the interpretation of the “color ratio.” J. Geophys. Res. 100, E4, 7513.Google Scholar
Prangé, R., Engle, I., Clarke, J. T., et al. 1995b Auroral signature of comet SL9 in the Jovian magnetosphere. Science 267, 1317.Google Scholar
Prangé, R., Engle, I., Dunlop, M., Maurice, S., and Rego, D. 1995C Magnetic mapping of auroral signatures of comet SL9 in the Jovian magnetosphere. Geophys. Res. Lett, submitted.Google Scholar
Senay, M. and Jewitt, D. 1994 Coma formation driven by carbon monoxide release from Comet Schwassmann-Wachmann, I., Nature 371, 229.Google Scholar
Shemansky, D. E. 1988 Energy branching in the Io plasma torus: The failure of neutral cloud theory. J. Geophys. Res. 93, 1773.Google Scholar
Schulz, M. and Lanzerotti, L. J. 1974 Particle Diffusion in the Radiation Belt. Springer-Verlag.Google Scholar
Schulz, R., Encrenaz, Th., Stüwe, J. A., and Wiedemann, G. 1995 Near-IR emissions in the upper Jovian atmosphere after SL9 impact: Indications of possible northern counterpart. Geophys. Res. Lett, 22, 2421.Google Scholar
Thomsen, M. F. 1979 Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss. Rev. Geophys. Space Phys. 17, 369.Google Scholar
Vasyliunas, V. M. and Dessler, A. J. 1981 The magnetic anomaly model of the Jovian magnetosphere: A post-Voyager assessment. J. Geophys. Res. 86, 8435.Google Scholar
Waite, J. H. Jr., Bagenal, F., Seward, C. et al. 1994 ROSAT observations of the Jupiter aurora. J. Geophys. Res. 99, 14799.Google Scholar
Waite, J. H. Jr., Gladstone, G. R., Franke, K., et al. 1995 ROSAT observations of X-ray emissions from Jupiter during the impact of comet Shoemaker-Levy 9. Science, 268, 1598.Google Scholar
Weaver, H. A., A'Hearn, M. F., Arpigny, C. et al. 1995 The Hubble Space Telescope oberving campaign on comet P/Shoemaker-Levy 9. Science 267, 1282.Google Scholar