Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-15T16:54:18.604Z Has data issue: false hasContentIssue false

Integral field spectroscopy with optical fibres

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An efficient technique for obtaining complete spectral informations over moderately extended objects is to transform the geometry of their telescopic images to match a classical long ”slit” aperture. This anamorphosis is conveniently made with bundles of optical fibres. Such devices are especially useful when high spatial resolution and large wavelength coverage are required at the same time. We review the existing instruments based on this technique and present some typical results. We discuss also the future developments of integral field spectroscopy with optical fibres (visible or IR domains) for the new generation of very large telescopes.

Type
3. Integral Field Spectrographs and Spectrometers
Copyright
Copyright © Astronomical Society of the Pacific 1995

References

Afanasiev, V., Vlasiuk, V., Dodonov, S., Silchenko, O. (1990) Academ. Nauk. USSR, preprint 54.Google Scholar
Arribas, S., Mediavilla, E., Rasilla, J.-L. (1991), ApJ, 369, 260.CrossRefGoogle Scholar
Barden, S., Wade, R. (1988) ASP Conf. Ser. 3, 113.Google Scholar
Dallier, R., Baudrand, J., Cuby, J.-G. (1993) ASP Conf. Ser. 37, 310.Google Scholar
Félenbok, P., Cuby, J.-G., Lemonnier, J.-P., Baudrand, J., Casse, M., André, M., Czarny J., , Daban, J.M., Marteaud, M., Vola, P. (1994) SPIE Symp.Astron. Telescopes & Instrum. for the 21th century”, 2198, 115.Google Scholar
García, A., Rasilla, J.-L., Arribas, S., Mediavilla, E. (1994) SPIE Symp.Astron. Telescopes & Instrum. for the 21th century”, 2198, 15.Google Scholar
Gray, P., Phillips, M., Turtle, A., Ellis, R. (1982) Proc, Astr. Soc. Austr., 4, 477.CrossRefGoogle Scholar
Haddad, B., Vanderriest, C. (1991) A&A, 245, 423.Google Scholar
Hill, J., Angel, J., Scott, J., Lindsley, D., Hintzen, P. (1980) ApJ, 242 L.69.CrossRefGoogle Scholar
Kapany, N. (1958) in “Concepts of classical Optics”, Strong, J. ed., Freeman publish. (San Francisco).Google Scholar
Levin, K., Tran, D., Kindler, E., Glenard, D., Joyce, R. (1993) ASP Conf. Ser. 37, 295.Google Scholar
Malivoir, C., Encrenaz, T., Vanderriest, C., Lemonnier, J.-P., Kohl-Moreira, J.-L. (1990) Icarus 87, 412 CrossRefGoogle Scholar
Nemiroff, R. (1988) ApJ, 335, 593.CrossRefGoogle Scholar
Stockton, A., MacKenty, J. (1987) ApJ, 316, 584.CrossRefGoogle Scholar
Vanderriest, C.(1980) PASP, 92, 858.CrossRefGoogle Scholar
Vanderriest, C., Bacon, R., Georgelin, Y., LeCoarer, E., Monnet, G. (1994) SPIE Symp. “Astron. Telescopes & Instrum. for the 21th century”, 2198, 1376.Google Scholar
Vanderriest, C., Courtès, G., Donas, J. (1984) J. Optics (Paris), 15, 237.CrossRefGoogle Scholar
Vanderriest, C., Lemonnier, J.-P. (1988) in “Instrumentation for ground-based Astronomy” (IXth Santa-Cruz workshop), ed. Robinson, L., p. 304, Springer-Verlag.Google Scholar