Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T04:29:39.548Z Has data issue: false hasContentIssue false

The Hot Galactic Corona and the Soft X-ray Background

Published online by Cambridge University Press:  12 April 2016

Q. Daniel Wang*
Affiliation:
Dearborn Observatory, Northwestern University 2131 Sheridan Road, Evanston, IL 60208-2900, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I characterize the global distribution of the ¾ keV band background with a simple model of the hot Galactic corona, plus an isotropic extragalactic background. The corona is assumed to be approximately polytropic (index = 5/3) and hydrostatic in the gravitational potential of the Galaxy. The model accounts for X-ray absorption, and is constrained iteratively with the ROSAT all-sky X-ray survey data. Regions where the data deviate significantly from the model represent predominantly the Galactic disk and individual nearby hot superbubbles. The global distribution of the background, outside these regions, is well characterized by the model; the 1σ relative dispersion of the data from the model is ~ 15%. The electron density and temperature of the corona near the Sun are ~ 1.1 × 10−3 cm−3 and ~ 1.7 × 106 K. The same model also explains well the 1.5 keV band background. The model prediction in the ¼ keV band, though largely uncertain, qualitatively shows large intensity and spectral variations of the corona contribution across the sky.

Type
Part VIII High-Velocity Clouds, Galactic Halo Models, Observations of the LMC
Copyright
Copyright © Springer-Verlag 1998

References

Barber, C.R., Roberts, T.P., & Warwick, R.C. (1996): MNRAS 282, 157 Google Scholar
Boulanger, F., & Perault, M. (1988): ApJ 330, 964 Google Scholar
Breitschwerdt, D., & Schmutzler, T. (1994): Nature 371, 774 CrossRefGoogle Scholar
Burrows, D.N., & Mendenhall, J.A. (1991): Nature, 351, 629 Google Scholar
Garmire, G.P., et al. (1992): ApJ 399, 694 CrossRefGoogle Scholar
Hasinger, G., et al. (1993): A&A 275, 1 Google Scholar
Johnston, K.V., Spergel, D.N., & Hernquist, L. (1995): ApJ 451, 598 Google Scholar
Kerp, J. (1994): A&A 289, 597 Google Scholar
Kuntz, K.D., Snowden, S.L., & Verter, F. 1997, ApJ, submittedGoogle Scholar
Martin, C., & Bowyer, S. (1990): ApJ 350, 242 Google Scholar
McCammon, D., & Sanders, W.T. (1990): ARA&A 28, 657 Google Scholar
Pietsch, W., Supper, R., & Vogler, A. (1995): in The Interplay between Massive Star Formation, The ISM, and Galaxy Evolution, pl79 Google Scholar
Raymond, J.C., & Smith, B.W. (1977): ApJS 35, 419, and updated by Raymond J.C. and installed in the XSPEC software packageGoogle Scholar
Sidher, S.D., Sumner, T.J., Quenby, J.J., & Gambhir, M. (1996): A&A 305, 308 Google Scholar
Shull, J.M., & Slavin, J. (1994): ApJ 427, 784 Google Scholar
Snowden, S.L., et al. (1991): Science 252, 1529 Google Scholar
Snowden, S.L., McCammon, D., & Verter, F. (1993): ApJL 409, 21 Google Scholar
Snowden, S.L., et al. (1994): ApJ 430, 601 CrossRefGoogle Scholar
Snowden, S.L., et al., (1995): ApJ 454, 643 Google Scholar
Snowden, S.L., Egger, R., Finkbeiner, D., Freyberg, M.J., & Plucinsky, P.P.(1997a): ApJ, submittedGoogle Scholar
Snowden, S.L., et al. (1997b): ApJ, in pressGoogle Scholar
Spitzer, L. (1956): ApJ 124, 20 Google Scholar
Wang, Q.D., & McCray, R. (1993): ApJL 409, 37 Google Scholar
Wang, Q.D. et al. (1995): ApJ 453, 783 Google Scholar
Wang, Q.D., & Ye, T. (1996): New Astronomy l, 245 CrossRefGoogle Scholar
Wolfire, K.G., McKee, C.F., Hollenbach, D., & Tielens, A.G.G.M. (1995): ApJ 453, 673 Google Scholar