Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:20:12.868Z Has data issue: false hasContentIssue false

Galactic Winds

Published online by Cambridge University Press:  12 April 2016

Heinrich J. Völk
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg
D. Breitschwerdt
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg
J. F. McKenzie
Affiliation:
Max-Planck-Institut für Aeronomie, Lindau

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the sequel we will be discussing that - apart from all other halo flows - it is highly probable that our Galaxy has a systematic mass loss; most other galaxies should behave in a similar way. This mass loss should occur in the form of a supersonic galactic wind provided the intergalactic pressure is low enough. We will investigate this possibility mainly for our Galaxy. We shall argue [1] that the energetic particle component of the interstellar medium, the cosmic rays (CRs), is basically responsible for driving a wind for typical gas temperatures below 106 K. Thus for asymptotic wind velocities of the order of the escape velocity, the mass flux is essentially determined by the observable CR energy loss from the Galaxy. Galaxies with very hot gas on the other hand hardly need the CR component and drive a wind almost exclusively through their thermal pressure.

Type
VI. Interstellar Matter at High Galactic Latitudes
Copyright
Copyright © Springer-Verlag 1989

References

1. Ipavich, F.: Astrophys. J. 196, 107, (1975)Google Scholar
2. Münch, G., Zirin, H.: Astrophys. J. 133, 11 (1961)Google Scholar
3. Shapiro, P.R., Field, G.B.: Astrophys. J. 205, 762 (1976)Google Scholar
4. Kahn, F.D.: In Investigating the Universe (D. Reidel Publ. Comp.) p. 1 (1981)Google Scholar
5. Oort, J.H.: Bull. Astron. Inst. Netherlands 18, 421 (1966)Google Scholar
6. Mirabel, I.F. Morras, R.: Astrophys. J. 279, 86 (1984)Google Scholar
7. van Woerden, H., Schwarz, U.J., Hulsbach, A.N.M.: In The Milky Way Galaxy, ed. by van Woerden, H. et al. (D. Reidel Publ. Comp.), p. 387 (1985)Google Scholar
8. Ginzburg, V.L.: Proc. 20th Int. Cosmic Ray Conf. 7, 7 (1987)Google Scholar
9. Parker, E.N.: Astrophys. J. 145, 811 (1966)Google Scholar
10. Skilling, J.: Mon. Not. Roy. Astron. Soc. 172, 557 (1975)Google Scholar
11. Völk, H.J.: In High Energy Astrophys., Proc. 19th Rencontre de Moriond, ed. by Van, Tran Than (Editions Frontières, Gif-sur-Yvette), p. 281 (1984)Google Scholar
12. McKenzie, J.F., Völk, H.J.: Astron. Astrophys. 116, 191 (1982)Google Scholar
13. Breitschwerdt, D., McKenzie, J.F., Völk, H.J.: In Interstellar Magnetic Fields, ed. by Beck, R. and Grave, R. (Springer-Verlag Berlin, Heidelberg), p. 131 (1987a)Google Scholar
14. Breitschwerdt, D., McKenzie, J.F., Völk, H.J.: Proc. 20th Int. Cosmic Ray Conf. 2, 115 (1987b)Google Scholar
15. McKenzie, J.F., Breitschwerdt, D., Völk, H.J.: Proc. 20th Int. Cosmic Ray Conf. 2, 119 (1987)Google Scholar
16. Habe, A., Ikeuchi, S.: Progress in Theor. Phys. 64, 1995 (1980)Google Scholar
17. Chevalier, R.A., Oegerle, W.R.: Astrophys. J. 227, 398 (1979)Google Scholar
18. Bregmann, J.N.: Astrophys. J. 236, 577 (1980)Google Scholar
19. Heiles, C.: this volume (1989)Google Scholar
20. Cox, D.P., McCammon, D.: Astrophys. J. 304, 657 (1986)Google Scholar
21. Bregmann, J.N., Glassgold, A.E.: Astrophys. J. 263, 564 (1982)Google Scholar
22. Hummel, E., Lesch, H., Wielebinski, R., Schlickeiser, R.: Astron. Astrophys. 197, L29 (1988)Google Scholar