Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T02:33:54.206Z Has data issue: false hasContentIssue false

Fluorescence Model for AG Draconis

Published online by Cambridge University Press:  12 April 2016

W. Van Hamme
Affiliation:
Department of Physics, Florida International University, Miami, FL 33199, USA
R.E. Wilson
Affiliation:
Astronomy Department, University of Florida, Gainesville, FL 32611, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A fluorescent light curve model (ionization-bounded wind and chromosphere with scale height) that previously found most fluorescent variation in symbiotic nova V1329 Cygni to be chromospheric, is applied to AG Draconis, where the strong wind of a well-detached red giant is illuminated by ultraviolet radiation from an accreting white dwarf. Bandpass dependence of light curve amplitude is even more striking than in V1329 Cyg and eliminates thermal re-radiation from the red star photosphere as a principal variation mechanism, since thermal re-radiation cannot change by large factors from U to B to V. Spectra show strong continuum and line emission, so both light curves and spectra show the importance of fluorescence. A small secular decay was included by fitting in time rather than phase, with dTwd/dt as a parameter. There is a 3σ indication of a large negative dP/dt. Chromospheric fluorescence accounts for the entire U variation, while B and V variations are too small for wind and chromosphere to be distinguished. We confirm a previously identified 355-day radial velocity period that is consistent with red star pulsation.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2002

References

Chochol, D., & Wilson, R.E. 2001, MNRAS, 326, 437 CrossRefGoogle Scholar
Elias, N.M. II, Wilson, R.E., Olson, E.C., Aufdenberg, J.P., Guinan, E.F., Güdel, M., Van Hamme, W., & Stevens, H.L. 1997, ApJ, 484, 394 CrossRefGoogle Scholar
Formiggini, L., & Leibowitz, E.M. 1990, A&A, 227, 121 Google Scholar
Fekel, F.C., Hinkle, K.H., Joyce, R.R., & Skrutskie, M.F. 2000, AJ, 120, 3255 CrossRefGoogle Scholar
Gális, R., Hric, L., Friedjung, M., & Petrík, K. 1999, A&A, 348, 533 Google Scholar
Huang, C.C., Chen, Y.F., & Chen, L. 1988, in The Symbiotic Phenomenon, ed. Mikolajewska, J., Friedjung, M., Kenyon, S.J., & Viotti, R. (Dordrecht: Kluwer), 205 Google Scholar
Mikolajewska, J., Kenyon, S.J., Mikolajewski, M., Garcia, M.R., & Polidan, R.S. 1995, AJ, 109, 1289 CrossRefGoogle Scholar
Munari, U., & Zwitter, T. 2002, A&A, 383, 188 Google Scholar
Seaquist, E.R., Taylor, A.R., & Button, S. 1984, ApJ, 284, 202 Google Scholar
Seaquist, E.R., Taylor, A.R., & Button, S. 1987, ApJ, 317, 555 CrossRefGoogle Scholar
Smith, V.V., Cunha, K., Jorissen, A., & Boffin, H.M.J. 1996, A&A, 315, 179 Google Scholar
Tomov, N.A., Tomova, M.T., & Ivanova, A. 2000, A&A, 364, 557 Google Scholar
Van Hamme, W., & Wilson, R.E. 1998, BAAS, 30, 1402 Google Scholar
Van Hamme, W., Samec, R.G., Gothard, N.W., Wilson, R.E., Faulkner, D.R., & Branly, R.M. 2001, AJ, 122, 3436 CrossRefGoogle Scholar
Wilson, R.E. 1999, in Modem Astrometry and Astrodynamics, ed. Dvorak, R., H.F.Haupt, , & Wodnar, K. (Vienna: Austrian Acad. Sci. Pub.), 219 Google Scholar
Wilson, R.E. 2001, in Interacting Astronomers: A Symposium on Mirek Plavec’s Favorite Stars, ed. Harmanec, P., Hadrava, P., & Hubeny, I., Publ. Astr. Inst. Acad. Sci. Czech. No. 89, 60 Google Scholar