Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T12:00:18.815Z Has data issue: false hasContentIssue false

Evolution of Supernova Remnants with Cosmic Rays and Radiative Cooling

Published online by Cambridge University Press:  12 April 2016

E. A. Dorfi*
Affiliation:
Institut für Astronomie, Universität Wien, Türkenschanzstrasse 17, A-1180 Wien, Austria

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent numerical models for SNR evolution are presented, including first-order Fermi acceleration with injection of suprathermal particles at the shock wave, heating due to dissipation of Alfvén waves in the precursor region and radiative cooling of the thermal plasma. The X-ray fluxes obtained from these SNR models show significant differences depending on the acceleration efficiency of cosmic rays. γ-ray fluxes are calculated originating from π0-decay of pions generated by collisions of the high-energy particles with the thermal plasma. Cooling of the thermal plasma and dissipation of Alfvén waves in the precursor are important to determine the final amount of the explosion energy ESN which is transferred into cosmic rays.

Subject headings: acceleration of particles — cosmic rays — gamma rays: theory — shock waves — supernova remnants

Type
Poster Papers
Copyright
Copyright © The American Astronomical Society 1994

References

Axford, W.I. 1981, in Proc. Internat. School and Workshop on Plasma Astrophysics (Varenna), ESA SP-161, 425 Google Scholar
Axford, W.I., Leer, E., Skadron, G. 1977, Proc. 15th Internat. Cosmic-Ray Conf. (Plodiv), 11, 132 Google Scholar
Bell, A.R. 1978a, MNRAS, 182, 147 Google Scholar
Bell, A.R. 1978b, MNRAS, 182, 443 Google Scholar
Blandford, R.D. 1988, in Supernova Remnants and the Interstellar Medium, ed. Roger, R.S. & Landecker, T.L. (Cambridge Univ. Press), 309 Google Scholar
Blandford, R.D., & Ostriker, J.P. 1978, ApJ, 221, L29 CrossRefGoogle Scholar
Dorfi, E.A. 1990, A&A, 234, 419 Google Scholar
Dorfi, E.A. 1991, A&A, 251, 597 Google Scholar
Dorfi, E.A., & Böhringer, H. 1993, A&A, 273, 251 Google Scholar
Drury, L.O’C. 1983, Rep. Prog. Phys., 46, 973 Google Scholar
Drury, L.O’C., Markiewicz, W., & Völk, H.J. 1989, A&A, 225, 179 Google Scholar
Drury, L.O’C., & Völk, H.J. 1981, ApJ, 248, 344 CrossRefGoogle Scholar
Falle, S.A.E.G. 1975, MNRAS, 172, 55 Google Scholar
Falle, S.A.E.G. 1981, MNRAS, 195, 1011 Google Scholar
Higdon, J.C., & Lingenfelter, R.E. 1975, ApJ, 198, Ll7 Google Scholar
Jones, T.W., & Kang, H. 1990, ApJ, 363, 488 Google Scholar
Kahn, F.D. 1976, A&A, 50, 145 Google Scholar
Krymsky, G.F. 1977, Dokl. Nauk. SSR, 234, 1306 (Engl. trans., Soviet Phys. Dokl. 23, 327)Google Scholar
McKee, C.F., & Ostriker, J.P. 1977, ApJ 218, 148 Google Scholar
Morfill, G.E. 1982a, MNRAS, 198, 583 CrossRefGoogle Scholar
Morfill, G.E. 1982b, ApJ, 262, 749 Google Scholar
Morfill, G.E., Aschenbach, B., & Drury, L.O’C. 1984, Nature, 311, 358 Google Scholar
Stecker, F.W. 1973, ApJ, 185, 499 Google Scholar
Stephens, S.A., & Badhwar, G.D. 1981, Ap&SS, 76, 213 Google Scholar
Völk, H.J., Drury, L.O’C., & McKenzie, J.F. 1984, A&A, 130, 19 Google Scholar