Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:00:51.231Z Has data issue: false hasContentIssue false

Anomalous Cepheids and Population II Blue Stragglers

Published online by Cambridge University Press:  12 April 2016

James M. Nemec*
Affiliation:
Department of Geophysics & Astronomy, University of British Columbia, Vancouver, B.C. V6T 1W5, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent studies of anomalous Cepheids (ACs) and Pop II blue stragglers (BSs), including photometrically variable BSs (VBSs), are reviewed. The VBSs represent about 25% of the BSs, the majority of which are SX Phe short-period variables in the Cepheid instability strip. Mass estimates derived using various techniques suggest that both ACs and BSs are relatively massive (about 1.0–1.6 Me). The recent discovery that two BSs in the globular cluster NGC 5466 are contact binaries, and the earlier discovery that one of the BSs in ω Cen is an eclipsing binary, provide direct evidence that at least some BSs are binary systems. If all BSs are binaries, and the time scale for coalescence is a few Gyr, then the majority are likely to be coalesced. Because ACs and BSs are found in the same stellar systems, and are probably related through their evolution, it is highly likely that most ACs are also coalesced binary systems. The fact that ACs and BSs are found only in low density environments, suggests that they were primordial binaries.

Type
3. Comparison of the Milky Way with Other Galaxies
Copyright
Copyright © Cambridge University Press 1989

References

Antonello, E., Broglia, P., Conconi, P. & Mantegazza, L. (1986). Fourier decomposition of the light curves of high amplitude Delta Scuti and SX Phe stars. Astron. & Astrophys., 169, 122132.Google Scholar
Arp, H.C. & Hartwick, F.D.A. (1971). A photometric study of the metal-rich globular cluster M71. Ap.J., 167, 499509.Google Scholar
Baade, W. & Swope, H.H. (1961). The Draco system, a dwarf galaxy. A. J., 66, 300347.Google Scholar
Baliunas, S.L. & Guinan, E.F. (1985). The old galactic cluster NGC 188 and the origin of the W Ursae Majoris-type contact binaries. Ap.J., 294, 207215.CrossRefGoogle Scholar
Bell, R.A. & VandenBerg, D.A. (1987). Theoretical isochrones for globular clusters with predicted Thuan-Gunn photometry. Ap.J.Suppl., 63, 335364.Google Scholar
Beasell, M. (1969). An investigation of short-period variable stars. Ap.J.Suppl., 18, 195220.CrossRefGoogle Scholar
Binnendijk, L. (1970). The orbital elements of W Ursae Majoris systems. Vistas in Astronomy, 12, 217256.CrossRefGoogle Scholar
Böhm-Vitense, E., Nemec, J.M., & Proffitt, C. (1984). The problem of the Barium stars. Ap.J., 278, 726738.Google Scholar
Böhm-Vitense, E., Szkody, P., Wallerstein, G., & Iben, I. (1974). Masses and Luminosities of Population II Cepheids. Ap.J., 194, 125.Google Scholar
Bond, H.E. & MacConnell, D.J. (1971). The nature of the field blue straggler stars. Ap.J., 165, 5155.CrossRefGoogle Scholar
Bopp, B.W. & Stencel, R.E. (1981). The FK Comae Stars. Ap.J., 247, L131L134.Google Scholar
Breger, M. (1980). The nature of dwarf Cepheids. V. Analysis and Conclusions. Ap.J., 235, 153162.Google Scholar
Buonanno, R., Buzzoni, A., Corsi, C.E., Fusi Pecci, F. & Sandage, A.R. (1988). High Precision Photometry of 10,000 Stars in M3. In The Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies, IAU Symp.126, eds. Grindlay, J.E. & Philip, A.G.D., pp.621622. Dordrecht: Reidel.Google Scholar
Buonanno, R., Corsi, C.E., Ferraro, I. & Fusi Pecci, F. (1987). CCD Photometry in globular clusters. II. NGC 7492. Astron. & Astrophys.Suppl., 67, 327340.Google Scholar
Buonanno, R., Corsi, C.E., Full Pecci, F., Alcaino, G. & Liller, W. (1984a). The color-magnitude diagram of NGC 288. Astron. & Astrophys.Suppl., 57, 7590.Google Scholar
Buonanno, R., Corsi, C.E., Fusi Pecci, F. & Harris, W.E. (1984b). Main-sequence photometry in NGC 2808. A.J., 89, 365.Google Scholar
Campbell, B. (1986). Strong cyanogen stars: the result of binary coalescence? Ap.J., 307, 750759.Google Scholar
Carney, B.W. & Peterson, R.C. (1981). Field Population II blue stragglers. Ap.J., 251, 190200.Google Scholar
Carney, B.W. & Seitzer, P. (1986). Deep photometry of the Draco dwarf spheroidal galaxy. A.J., 92, 2342.Google Scholar
Chaffee, F.H. Jr. & Ables, H.D. (1983). Radial velocities of blue stragglers in M3. P.A.S.P., 95, 835838.Google Scholar
Christian, C.A. & Heasley, J.N. (1986). Color-magnitude diagram of Palomar 4: CCD photometry. Ap.J., 303, 216225.Google Scholar
Christian, C.A. & Heasley, J.N. (1988). CCD photometry of NGC 2419. A.J., 95, 14221452.Google Scholar
Christy, R.F. (1970). Lectures on variable stars. III. J.R.A.S.C., 64, 831.Google Scholar
Collier, A.C & Jenkins, C.R. (1984). Close binary stars and old stellar populations: the blue straggler problem revisited. M.N.R.A.S., 211, 391419.CrossRefGoogle Scholar
Cowley, A.P. & Crampton, D. (1985). A new CH star in Omega Centauri. P.A.S.P., 97, 835837.Google Scholar
Cox, A.N. (1987). Modes, masses, metallicities, and magnitudes of RR Lyrae variables. In Second Conference on Faint Blue Stars, Proc.I.A.U.Colloq. 95, in press. Schenectady, N.Y.: L. Davis Press.Google Scholar
Cox, A.N., King, D.S. & Hodson, S.W. (1979). Theoretical periods and masses of double-mode dwarf Cepheids. Ap.J., 228, 870874.Google Scholar
Cox, A.N. & Proffitt, C. (1988). Theoretical interpretations of anomalous Cepheid pulsations. Ap.J., 324, 10421047.CrossRefGoogle Scholar
Da Costa, G.S. (1984) The age(s?) of the Sculptor dwarf galaxy. Ap.J., 285, 483494.Google Scholar
Da Costa, G.S. (1987). CCD photometry of blue stragglers in the globular cluster M3. In The Second Conference on Faint Blue Stars, IAU Colloquium 95, eds. Philip, A.G.D., Hayes, D.S. & Liebert, J.W., pp.579582. Schenectady, N.Y.: L. Davis Press.Google Scholar
Da Costa, G.S. (1988). Dwarf Spheroidal Galaxies and Globular Clusters. In the Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies, IAU Symp.126, eds. Grindlay, J.E. & Philip, A.G.D., p.217235. Dordrecht: Reidel.Google Scholar
Da Costa, G.S. & Demarque, P. (1982). Nitrogen variations on the main sequence of 47 Tucanae: implications from stellar structure theory. Ap.J., 259, 193197.Google Scholar
Da Costa, G.S. & Norris, J. (1988). Variability of ω Centauri blue stragglers: clues to their origin. In the Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies, IAU Symp.126, eds. Grindlay, J.E. & Philip, A.G.Davis, pp.681682. Dordrecht: Reidel Google Scholar
Da Costa, G.S., Norris, J. & Villumsen, J.V. (1986). The blue stragglers of Omega Centauri. Ap.J., 308, 743754.Google Scholar
Da Costa, G.S., Ortolani, S., & Mould, J. (1982). Pal 14: an intermediate metal abundance globular cluster in the outer galactic halo. Ap.J., 257, 633639.CrossRefGoogle Scholar
Demarque, P. & Hirschfeld, A.W. (1975). On the nature of the bright variables in dwarf spheroidal galaxies. Ap.J., 202, 346352.Google Scholar
Demers, S. & Irwin, M.J. (1987). The long period variables of Fornax. I. Search, discovery and periods. M.N.R.A.S., 226, 943 Google Scholar
Demers, S. & Irwin, M.J. (1989). The long period variables of Fornax. II. The brighter Cepheids. M.N.R.A.S., in press.Google Scholar
Eggen, O.J. (1952a). A new variable star with the shortest known period. P.A.S.P., 64, 31.Google Scholar
Eggen, O.J. (1952b). The short period variable HD 223065 (=SX Phe). P.A.S.P., 64, 305.Google Scholar
Eggen, O.J. (1970). Ultrashort-period variables and the masses of blue stragglers in the old disk population. P.A.S.P, 82, 274292.Google Scholar
Eggen, O.J. (1971). The nature of the blue stragglers in the old disk population. P.A.S.P, 83, 762767.CrossRefGoogle Scholar
Eggen, O.J. (1976). Contact binaries, II. Mem.R.A.S.20, 111164.Google Scholar
Eggen, O.J. (1979). The classification of intrinsic variables. VIII. Ultrashort period Cepheids. Ap.J.Suppl., 41, 413434.Google Scholar
Eggen, O.J. & Iben, I. (1988). Starbursts, binary stars, and blue stragglers in local superclusters and groups. I. The very young disk and young disk populations. A.J., 96, 635669.Google Scholar
Fernley, J.A., Jameson, R.F., Sherrington, M.R. & Skillen, I. (1987). The radii and masses of dwarf Cepheids. M.N.R.A.S., 225, 451468.Google Scholar
Fitch, W.S. (1970). Pulsation constants and densities for double-mode variables in the Cepheid instability strip. Ap.J., 161, 669678.Google Scholar
Fitch, W.S. & Szeidl, B. (1976). The three radial modes and evolutionary state of AC Andromedae. Ap.J., 203, 616624.Google Scholar
Frogel, J. & Twarog, B. (1983). Faint stellar photometry in clusters I. NGC 2204 and E3. Ap.J., 274, 270.Google Scholar
Frolov, M.S. & Irakaev, B.N. (1984). On the SX Phe-type stars. I.B.V.S., No. 2462, pp. 12.Google Scholar
Graham, J. (1975). The RR Lyrae Stars in the Small Magellanic Cloud. P.A.S.P.83, 641682.Google Scholar
Gratton, R.G. & Ortolani, S. (1984). Deep photometry of globular clusters. II. The remote cluster Pal 3. Astron. & Astrophys.Suppl., 57, 177188.Google Scholar
Guinan, E.F. & Bradstreet, D.H. (1988). Kinematic clues to the origin and evolution of low mass contact binaries. In Formation and evolution of low mass stars; NATO ASI Meeting at Viana do Castelo, Portugal, Oct. 1987, eds. Deupree, A.K. & Lago, M.T., in press. Dordrecht: Reidel.Google Scholar
Halpren, L. & Moon, T.T. (1983). Revised list of pulsating stars with ultra-short periods. Astrophys. & Space Science, 91, 4351.Google Scholar
Harris, H.C. (1985). Population II Cepheids. In Cepheids: Theory and Observations, ed. Madore, B.F., pp. 232245. Cambridge: Cambridge University Press.Google Scholar
Harris, H.C. (1987). Population II variables. In Lecture Notes in Physics, Vol. 274, eds. Cox, A.N., Sparks, W.M. & Starrfield, S.G., pp. 274283. Berlin: Springer-Verlag.Google Scholar
Harris, W.E. & Canterna, R. (1980). Color-magnitude photometry to the main sequence for the anomalous globular cluster Palomar 12. Ap.J., 239, 815.Google Scholar
Hesser, J.E., McClure, R.D., Hawarden, T.G., Cannon, R.D., von Rudloff, R., Kruger, B. & Egles, D. (1984). A new color-magnitude diagram for the peculiar star cluster E3=C0921-770. P.A.S.P., 96, 406418.CrossRefGoogle Scholar
Hills, J.G. & Day, C.A. (1976). Stellar collisions in globular clusters. Ap.Letters, 17, 87.Google Scholar
Hirshfeld, A.W. (1980). The stellar content of dwarf spheroidal galaxies. Ap.J., 241, 111124.Google Scholar
Hodge, P.W. & Wright, F.W. (1983). Variable stars in the Leo I dwarf galaxy. A.J., 83, 228.Google Scholar
Jensen, K.S. & Jorgensen, H.E. (1985). CCD based B and V lightcurves for the eclipsing binary NJL 5 in Omega Centauri. Astron. & Astrophys.Suppl., 60, 229236.Google Scholar
Jorgensen, H.E. (1982). The dwarf Cepheid NJL 79 in Omega Centauri. Astron. & Astrophys., 108, 99101.Google Scholar
Jorgensen, H.E. & Hansen, L. (1984) The dwarf Cepheids E39 and NJL 220 in Omega Centauri, Astron. & Astrophys., 133, 165168.Google Scholar
Kaluzny, J. & Shara, M.M. (1987). The discovery of six new short-period variables in the old open cluster NGC 188. Ap.J., 314, 585593.Google Scholar
Liller, M.H. (1978). An eclipsing binary in the field of Cen. I.B.V.S., No. 1527.Google Scholar
Mateo, M., Harris, H.C., Nemec, J.M., Olszewski, E. & Schombert, J. (1988). Blue stragglers as remnants of stellar mergers: the discovery of three contact binaries among the blue stragglers in NGC 5466. In preparation.Google Scholar
Mateo, M., Nemec, J.M., Harris, H.C., Olszewski, E., Schombert, J. & Brent, G. (1989). Variable blue stragglers in NGC 5466. In preparation.Google Scholar
Mathieu, R.D. & Latham, D.W. (1986). The spatial distribution of spectroscopic binaries and blue stragglers in the open cluster M67. A.J., 92, 13641371.Google Scholar
Mathieu, R.D. & Mazeh, T. (1988). The circularized binaries in open clusters: a new clock for age determination. Ap.J., 326, 256264.Google Scholar
McClure, R.D. (1985). The carbon and related stars. Journ.Roy.Astron.Soc., 79, 277.Google Scholar
McClure, R.D., Fletcher, R.D. & Nemec, J.M. (1980). The binary nature of the barium stars. Ap.J., 238, 135138.Google Scholar
McClure, R.D., Hesser, J.E., Stetson, P.B. & Stryker, L.L. (1985). CCD photometry of the sparse halo cluster E3. P.A.S.P., 97, 665675.Google Scholar
McClure, R.D. & Twarog, B.A. (1977). New photographic data for NGC 188. Ap.J., 214, 111123.Google Scholar
McCrea, W.H. (1964). Extended main-sequence of some stellar clusters. M.N.R.A.S., 128, 147155.CrossRefGoogle Scholar
McMillan, R.S., Breger, M., Ferland, G.J. & Loumos, G.L. (1976). A Survey for small-amplitude variability among Population II stars. P.A.S.P., 88, 495509.Google Scholar
McNamara, D.H. & Feltz, K.A. Jr. (1978). GD 428 and the nature of dwarf Cepheids. P.A.S.P., 90, 275284.Google Scholar
Mochnachi, S. (1981). Contact binary stars. Ap.J., 245, 650670.Google Scholar
Mould, J. (1983). Star formation history of nearby dwarf galaxies. In Highlights of Astronomy, ed. West, R.M..,6, 179186. Dordrecht : Reidel.Google Scholar
Mould, J. & Aaronson, M. (1983). The Carina dwarf spheroidal – an intermediate age galaxy. Ap.J., 273, 530538.Google Scholar
Nemec, J.M. & Cohen, J.G. (1988). Blue straggler stars in the globular cluster NGC 5053. Ap.J. (in press).Google Scholar
Nemec, J.M. & Harris, H.C. (1987). Blue straggler stars in the globular cluster NGC 5466. Ap.J., 316, 172188.Google Scholar
Nemec, J.M., Mateo, M., Burke, M., Richer, H., Fahlman, G.G., Schombert, J. & Harris, H. (1988). SX Phe variables in the globular cluster NGC 5053. In preparation.Google Scholar
Nemec, J.M. & Rich, R.M. (1985). Ages of galactic halo star clusters. B.A.A.S., 18, 446.Google Scholar
Nemec, J.M., Richer, H. & Fahlman, G.G. (1989). Blue straggler stars in the globular cluster NGC 5897. In preparation.Google Scholar
Nemec, J.M., Wehlau, A., & Mendes de Oliveira, C. (1988). Variable stars in the Ursa Minor dwarf galaxy. A.J., 95, 528559.Google Scholar
Niss, B., Jorgensen, H.E. & Laustsen, S. (1978). A search for new variables in the globular cluster Omega Centauri. Astron. & Astrophys.Suppl., 32, 387393.Google Scholar
Norris, J. & Zinn, R. (1975). The Cepheid variables and the stellar populations of the dwarf spheroidal galaxies. Ap.J.. 202, 335345.Google Scholar
Olszewski, E. & Aaronson, M. (1985). The Ursa Minor dwarf galaxy: still an old stellar system. A.J., 90, 22212238.Google Scholar
Peterson, C. & King, I.R. (1975). The structure of star clusters. VI. Observed radii and structural parameters in globular clusters. A.J., 80, 427436.Google Scholar
Peterson, R.C., Carney, B.W. & Latham, D.W. (1984). The blue stragglers of M67. Ap.J., 279, 237251.Google Scholar
Renzini, A., Mengel, J.G. & Sweigart, A.V. (1977). The anomalous Cepheids in dwarf spheroidal galaxies as binary systems. Astron. & Astrophys., 56, 369376.Google Scholar
Richer, H.B. & Fahlman, G.G. (1987). Deep CCD photometry in globular clusters. VI. White dwarfs, cataclysmic variables, and binary stars in M71. Ap.J., 325, 218224.Google Scholar
Saha, A., Monet, D.G. & Seitzer, P. (1986). RR Lyrae Stars in the Carina dwarf galaxy. A.J., 92, 302327.Google Scholar
Saio, H. & Wheeler, J.C. (1980). The evolution of mixed long-lived stars. Ap.J., 242, 11761182.Google Scholar
Sandage, A.R. (1953). The color-magnitude diagram for the globular cluster M3. A.J., 58, 6175.Google Scholar
Sandage, A.R. & Katem, B. (1968). On the intrinsic widths of the subgiant and horizontal branch sequences in the globular cluster M3. A.J., 87, 537554.Google Scholar
Simon, N. & Lee, A.S. (1981). The structural properties of Cepheid light curves. Ap.J., 248, 291297.CrossRefGoogle Scholar
Smith, G.H. & Dopita, M.A. (1983). The chemical inhomogeneity of the Sculptor dwarf spheroidal galaxy. Ap.J., 271, 113122.Google Scholar
Smith, G.H., McClure, R.D., Stetson, P.B., Hesser, J.E., & Bell, R.A. (1986). CCD photometry of the globular cluster Palomar 5. A.J., 91, 842854.CrossRefGoogle Scholar
Smith, H.A. & Stryker, L.L. (1986). Anomalous Cepheids in the Sculptor dwarf galaxy. A.J., 92, 328334.Google Scholar
Stellingwerf, R.F. (1979). Pulsation in the lower Cepheid strip. I. Linear survey. Ap.J., 227, 935942.Google Scholar
Stetson, P.B. (1984). Spectroscopy of giant stars in the Draco and Ursa Minor dwarf galaxies. P.A.S.P., 96, 128142.Google Scholar
Swope, H.H. (1968). Thirteen periodic variable stars brighter than the normal RR Lyrae-type variables in four dwarf galaxies. A.J., 73, 204205.Google Scholar
Teays, T.J. & Simon, N.R. (1985). The unusual pulsating variable XZ Ceti. Ap.J., 290, 683688.Google Scholar
van Agt, S.L.T.J. (1967). A discussion of the Ursa Minor dwarf galaxy based on plates obtained by Walter Baade. Bull.Astron.Inst.Neth., 19, 275302.Google Scholar
van Agt, S.L.T.J. (1968). Magnitudes, phases and light-curves of variable stars in the central region of the Ursa Minor dwarf galaxy. Bull.Astron.Inst.Neth.Suppl., 2, 237258.Google Scholar
van den Bergh, S. (1972a). Search for faint companions to M31. Ap.J.,171, L31L33.Google Scholar
van den Bergh, S. (1972b). Resolution of one of the companions to M31. Ap.J., 178, L99.Google Scholar
van den Bergh, S., Demers, S. & Kunkel, W.E. (1980). The dying globular cluster E3. Ap.J., 239, 112.Google Scholar
VandenBerg, D.A. & Smith, G.H. (1988). Constraints from stellar models on mixing as a viable explanation of abundance anomalies in globular clusters. P.A.S.P., 100, 314335.Google Scholar
van den Heuvel, E.P.J. (1968). The origin of Ap and Am stars and other slowly rotating A- and B-type main-sequence stars. Bull.Astron.Inst.Neth., 19, 326431.Google Scholar
Wallerstein, G. & Cox, A.N. (1984). The Population II Cepheids. P.A.S.P., 96, 677691.Google Scholar
Walraven, Th. (1955). On the short period variable HD 223065. Bull.Astron.Inst.Neth., 12, 57.Google Scholar
Webbink, R.F. (1976a). The evolution of low-mass close binary systems. I. The evolutionary fate of contact binaries. Ap.J., 209, 829845.Google Scholar
Webbink, R.F. (1976b). The evolution of low-mass close binary systems. II. 1.50 M + 0.75 M: evolution into contact. Ap.J.Suppl., 32, 583601.Google Scholar
Webbink, R.F. (1979). The evolution of low-mass close binary systems. VI. Population II W Ursae Majoris systems. Ap.J., 227, 178184.Google Scholar
Webbink, R.F. (1985). Structure parameters of galactic globular clusters. In Dynamics of Star Clusters, eds. Goodman, J.& Hut, P., pp. 547577. Dordrecht: Reidel.Google Scholar
Wheeler, J.C. (1979). Blue stragglers as long lived stars. Ap.J., 234, 569.Google Scholar
Whelan, J.A.J., Worden, S.P., Rucinski, S.M. & Romanishin, W. (1979). AH Cancri: a contact binary in M67. M.N.R.A.S., 186, 729741.Google Scholar
Zinn, R. (1980). The dwarf spheroidal galaxies. In Globular Clusters, ed. Hanes, D. & Madore, B., pp. 191212. Cambridge: Cambridge University Press.Google Scholar
Zinn, R. (1981). The metal abundance range in the Ursa Minor dwarf galaxy. Ap.J., 251, 5260.Google Scholar
Zinn, R. (1985). The dwarf spheroidal galaxies and their variable stars. Mem.S.A.It., 56, 223236.Google Scholar
Zinn, R. & Dahn, C. (1976). Variable 19 in NGC 5466: An anomalous cepheid in a globular cluster. A.J., 81, 527533.Google Scholar
Zinn, R. & King, C.R. (1982). The Mass of the Anomalous Cepheid in the Globular Cluster NGC 5466. Ap.J., 262, 700708.Google Scholar
Zinn, R. & Searle, L. (1976). The masses of the anomalous Cepheids in the Draco system. Ap.J., 209, 734747.Google Scholar