Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T05:46:04.489Z Has data issue: false hasContentIssue false

2. Evidence for 26Al in the Solar System

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the evidence for the presence of short lived 26Al (τ1/2 = 0.72 × 106 years) in the early solar system. Large excesses of 26Mg of up to 5% have been found in Ca-Al rich inclusions of the Allende meteorite. The Mg excesses correlate well with 27Al/24Mg and in two cases they are found in high purity separates of coarse grained Al-rich minerals which tend to exclude Mg. The data demonstrate that 26Al was present in the early solar system. Mechanisms for addition of 26Al to the solar nebula or for production within an active solar system are required within a few million years of condensation of small (centimeter sized) objects. The 26Al abundance in Allende inclusions is high enough to provide for effective melting of kilometer size bodies or larger, if such bodies accreted early enough (a few million years) to incorporate the 26Al.

Type
Part VI. Primitive Meteorites
Copyright
Copyright © A.H. Delsemme 1977

References

Chen, J. H., and Tilton, G. R. 1976, Geochim. Cosmochim. Acta, 40, 635.CrossRefGoogle Scholar
Clarke, W. B., de Laeter, J. R., Schwarcz, H. P., and Shane, K. C. 1970, J. Geophys. Res., 75, 448.CrossRefGoogle Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. 1972, Science, 182, 485.CrossRefGoogle Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. 1976, Earth Planet. Sci. Lett., (in press).Google Scholar
Gray, C. M., and Compston, W. 1974, Nature, 251, 495.CrossRefGoogle Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. 1973, Icarus, 20, 213.CrossRefGoogle Scholar
Lee, T., and Papanastassiou, D. A. 1974, Geophys. Res. Lett., 1, 225.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1976a, Geophys. Res. Lett., 3, 109.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1976b, Trans. Amer. Geophys. Union, 57, 278.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1977, Ap.J. (Letters), 211, L107.CrossRefGoogle Scholar
Schramm, D. N., Tera, F., and Wasserburg, G. J. 1970, Earth Planet. Sci. Lett., 10, 44.CrossRefGoogle Scholar
Schramm, D. N., and Wasserburg, G. J. 1970, Ap.J., 162, 57.CrossRefGoogle Scholar
Tatsumoto, M., Unruh, D. M., and Desborough, G. A. 1976, Geochim. Cosmochim. Acta, 40, 617.CrossRefGoogle Scholar
Urey, H. C. 1955, Proc. Natl. Acad. Sci. U.S., 41, 127.Google Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. 1977, Proc. Wat. Acad. Sciences, US (submitted).Google Scholar