Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T06:50:42.665Z Has data issue: false hasContentIssue false

Using a human-factors engineering approach to evaluate environmental cleaning in Veterans’ Affairs acute and long-term care facilities: A qualitative analysis

Published online by Cambridge University Press:  24 October 2023

Linda L. McKinley*
Affiliation:
William S. Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
Cassie C. Goedken
Affiliation:
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City, Iowa Iowa City VA Health Care System, Iowa City, Iowa
Erin C. Balkenende
Affiliation:
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City, Iowa Iowa City VA Health Care System, Iowa City, Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
Stacey M. Hockett Sherlock
Affiliation:
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City, Iowa Iowa City VA Health Care System, Iowa City, Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
Mary Jo Knobloch
Affiliation:
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City, Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
Rosie Bartel
Affiliation:
Patient-Centered Outcomes Research Institute (PCORI), Washington, DC
Eli N. Perencevich
Affiliation:
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City, Iowa Iowa City VA Health Care System, Iowa City, Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
Heather S. Reisinger
Affiliation:
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City, Iowa Iowa City VA Health Care System, Iowa City, Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa Institute for Clinical and Translational Science, Iowa City, Iowa
Nasia Safdar
Affiliation:
William S. Middleton Memorial Veterans’ Hospital, Madison, Wisconsin University of Wisconsin–Madison, Madison, Wisconsin
*
Author for correspondence: Linda L. McKinley, William S. Middleton Memorial Veterans’ Hospital, Madison, Wisconsin. E-mail: linda.mckinley2@va.gov

Abstract

Background:

Environmental cleaning is important in the interruption of pathogen transmission. Although prevention initiatives have targeted environmental cleaning, practice variations exist and compliance is low. Evaluation of human factors influencing variations in cleaning practices can be valuable in developing interventions to standardized practices. We conducted a work-system analysis using a human-factors engineering (HFE) framework to identify barriers and facilitators to environmental cleaning practices in acute and long-term care settings within the Veterans’ Affairs health system.

Methods:

We conducted a qualitative study with key stakeholders at 3 VA facilities. We analyzed transcripts for thematic content and mapped themes to the HFE framework.

Results:

Staffing consistency was felt to improve cleaning practices and teamwork. We found that many environmental management service (EMS) staff were veterans who were motivated to serve fellow veterans, especially to prevent infections. However, hiring veterans comes with regulatory hurdles that affect staffing. Sites reported some form of monitoring their cleaning process, but there was variation in method and frequency. The EMS workload was affected by whether rooms were occupied by patients or were semiprivate rooms; both were reportedly more difficult to clean. Room design and surface finishes were identified as important to cleaning efficiency.

Conclusion:

HFE work analysis identified barriers and facilitators to environmental cleaning. These findings highlight intervention entry points that may facilitate standardized work practices. There is a need to develop task-specific procedures such as cleaning occupied beds and semiprivate rooms. Future research should evaluate interventions that address these determinants of environmental cleaning.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weber, DJ, Anderson, DJ, Sexton, DJ, Rutala, WA. Role of the environment in the transmission of Clostridium difficile in healthcare facilities. Am J Infect Control 2013;41 suppl 5:S105S110.CrossRefGoogle Scholar
Boyce, JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 2007;65 suppl 2:5054.CrossRefGoogle Scholar
Otter, JA, Yezli, S, French, GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 2011;32:687699.CrossRefGoogle ScholarPubMed
Donskey, CJ. Does improving surface cleaning and disinfection reduce healthcare-associated infections? Am J Infect Control 2013;41 suppl 5:S12S19.CrossRefGoogle Scholar
Evans, ME, Kralovic, SM, Simbartl, LA, Jain, R, Roselle, GA. Effect of a Clostridium difficile infection prevention initiative in Veterans’ Affairs acute-care facilities. Infect Control Hosp Epidemiol 2016;37:720722.CrossRefGoogle ScholarPubMed
Evans, ME, Kralovic, SM, Simbartl, LA, et al. Veterans’ Affairs methicillin-resistant Staphylococcus aureus prevention initiative associated with a sustained reduction in transmissions and healthcare-associated infections. Am J Infect Control 2013;41:10931095.CrossRefGoogle Scholar
Atsma, F, Elwyn, G, Westert, G. Understanding unwarranted variation in clinical practice: a focus on network effects, reflective medicine and learning health systems. Int J Qual Health Care 2020;32:271274.CrossRefGoogle ScholarPubMed
Keating, JA, Obasi, C, McKinley, L, et al. Building implementation science for Veterans’ Affairs healthcare-associated infection prevention: VA Healthcare-Associated Infection Prevention Network (VHIN). Infect Control Hosp Epidemiol 2018;39:753757.CrossRefGoogle ScholarPubMed
Doll, M, Stevens, M, Bearman, G. Environmental cleaning and disinfection of patient areas. Int J Infect Dis 2018;67:5257.CrossRefGoogle ScholarPubMed
Carayon, P, Schoofs Hundt, A, Karsh, BT, et al. Work system design for patient safety: the SEIPS model. Qual Saf Health Care 2006;15 suppl 1:i50i58.CrossRefGoogle Scholar
Carayon, P. Sociotechnical systems approach to healthcare quality and patient safety. Work (Reading, MA) 2012;41 suppl 1:38503854.Google Scholar
Holden, RJ, Carayon, P, Gurses, AP, et al. SEIPS 2.0: a human-factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics 2013;56:16691686.CrossRefGoogle ScholarPubMed
Yanke, E, Zellmer, C, Van Hoof, S, Moriarty, H, Carayon, P, Safdar, N. Understanding the current state of infection prevention to prevent Clostridium difficile infection: a human-factors and systems engineering approach. Am J Infect Control 2015;43:241247.CrossRefGoogle ScholarPubMed
Carayon, P, Wetterneck, TB, Rivera-Rodriguez, AJ, et al. Human-factors systems approach to healthcare quality and patient safety. Appl Ergon 2014;45:1425.CrossRefGoogle ScholarPubMed
Elo, S, Kyngas, H. The qualitative content analysis process. J Adv Nurs 2008;62:107115.CrossRefGoogle ScholarPubMed
Elo, S, Kääriäinen, M, Kanste, O, Pölkki, T, Utriainen, K, Kyngäs, H. Qualitative content analysis: a focus on trustworthiness. SAGE Open 2014;4:2158244014522633.CrossRefGoogle Scholar
Bengtsson, M. How to plan and perform a qualitative study using content analysis. NursingPlus Open 2016;2:814.CrossRefGoogle Scholar
McKinley, L, Baubie, K, Bartel, R, Flower, M, Keating, J, Safdar, N. Engaging veterans in identifying key elements of environmental cleaning and disinfection for preventing healthcare-associated infections: a rapid qualitative inquiry of the patient perspective. J Gen Intern Med 2022;50:148154.Google Scholar
Goedken, CC, McKinley, L, Balkenende, E, et al. “Our job is to break that chain of infection”: challenges environmental management services (EMS) staff face in accomplishing their critical role in infection prevention. Antimicrob Steward Healthc Epidemiol 2022;2:e129.CrossRefGoogle ScholarPubMed
Tyan, K, Cohen, PA. Investing in our first line of defense: environmental services workers. Ann Intern Med 2020;4:306307.CrossRefGoogle Scholar
Peters, A, Otter, J, Moldovan, A, Parneix, P, Voss, A, Pittet, D. Keeping hospitals clean and safe without breaking the bank; summary of the Healthcare Cleaning Forum 2018. Antimicrob Resist Infect Control 2018;7:132.CrossRefGoogle Scholar
Coelho, P. Relationship between nurse certification and clinical patient outcomes: a systematic literature review. J Nurs Care Qual 2020;35:E1E5.CrossRefGoogle ScholarPubMed
Pogorzelska, M, Stone, PW, Larson, EL. Certification in infection control matters: Impact of infection control department characteristics and policies on rates of multidrug-resistant infections. Am J Infect Control 2012;40:96101.CrossRefGoogle ScholarPubMed
Saint, S, Greene, MT, Olmsted, RN, et al. Perceived strength of evidence supporting practices to prevent health care-associated infection: Results from a national survey of infection prevention personnel. Am J Infect Control 2013;41:100106.CrossRefGoogle ScholarPubMed
Rahman, A, Straker, JK, Manning, L. Staff assignment practices in nursing homes: review of the literature. J Am Med Dir Assoc 2009;10:410.CrossRefGoogle ScholarPubMed
Goedken, C, McKinley, L, Balkenende, E, Hockett, S, Reisinger, H, Safdar, N. Understanding barriers and facilitators to improve environmental cleaning practices: perceptions from VA environmental services staff. Presented at: 13th Annual Conference on the Science of Implementation and Dissemination in Health; 2020, held virtually.Google Scholar
Tortorella, F, Ukanowicz, D, Douglas-Ntagha, P, Ray, R, Triller, M. Improving bed turnover time with a bed management system. J Nurs Adm 2013;43:3743.CrossRefGoogle ScholarPubMed
Guh, H, Carling, P. Options for evaluating environmental cleaning. Centers for Disease Control and Prevention website. https://www.cdc.gov/hai/toolkits/evaluating-environmental-cleaning.html. Published December 2010. Accessed October 3, 2023.Google Scholar
Ivers, N, Jamtvedt, G, Flottorp, S, et al. Audit and feedback: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev 2012;6:CD000259.Google Scholar
Bernstein, DA, Salsgiver, E, Simon, MS, et al. Understanding barriers to optimal cleaning and disinfection in hospitals: a knowledge, attitudes, and practices survey of environmental services workers. Infect Control Hosp Epidemiol 2016;37:14921495.CrossRefGoogle ScholarPubMed
The Environmental Management Services: Sanitation Procedure Guide (2016).Google Scholar
McKinley, L, Goedken, CC, Balkenende, E, et al. Evaluation of daily environmental cleaning and disinfection practices in Veterans’ Affairs acute and long-term care facilities: a mixed-methods study. Am J Infect Control 2023;51:205213.CrossRefGoogle ScholarPubMed
Keddington, AS, Moore, J. Simulation as a method of competency assessment among health care providers: a systematic review. Nurs Educ Perspect 2019;40:9194.CrossRefGoogle ScholarPubMed
Van Tiem, JM, Friberg, JE, Cunningham Goedken, C, et al. Environmental service workers as potential designers of infection control policy in long-term care settings. Am J Infect Control 2020;48:398402.CrossRefGoogle ScholarPubMed
Institute of Medicine Committee on Quality of Health Care. In: Kohn, LT, Corrigan, JM, Donaldson, MS, eds. To Err is Human: Building a Safer Health System. Washington, DC: National Academies Press; 2000.Google Scholar
Rock, C, Cosgrove, SE, Keller, SC, et al. Using a human-factors engineering approach to improve patient room cleaning and disinfection. Infect Control Hosp Epidemiol 2016;37:15021506.CrossRefGoogle ScholarPubMed
Hignett, S, Jones, EL, Miller, D, et al. Human factors and ergonomics and quality improvement science: integrating approaches for safety in healthcare. BMJ Qual Saf 2015;24:250254.CrossRefGoogle ScholarPubMed
Carayon, P, Thuemling, T, Parmasad, V, et al. Implementation of an antibiotic stewardship intervention to reduce prescription of fluoroquinolones: a human factors analysis in two intensive care units. J Patient Saf Risk Manag 2021;26:161171.CrossRefGoogle ScholarPubMed
Government Organization and Employees § 3310. 5 US Code 3310 Preference eligibles; examinations; guards, elevator operators, messengers, and custodians. (2013).Google Scholar
Supplementary material: File

McKinley et al. supplementary material

McKinley et al. supplementary material

Download McKinley et al. supplementary material(File)
File 24.5 KB