Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T19:26:00.216Z Has data issue: false hasContentIssue false

Difference between days of therapy and days of antibiotic spectrum coverage in an inpatient antimicrobial stewardship program: Vector autoregressive models for time-series analysis

Published online by Cambridge University Press:  08 November 2023

Shutaro Murakami*
Affiliation:
Department of Pharmacy, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan Department of Public Health and Epidemiology, Meiji Pharmaceutical University, Tokyo, Japan
Manabu Akazawa
Affiliation:
Department of Public Health and Epidemiology, Meiji Pharmaceutical University, Tokyo, Japan
Hitoshi Honda
Affiliation:
Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
*
Corresponding author: Shutaro Murakami; Email: shuutaromura@gmail.com

Abstract

Objective:

The days of therapy (DOT) metric, used to estimate antimicrobial consumption, has some limitations. Days of antibiotic spectrum coverage (DASC), a novel metric, overcomes these limitations. We examined the difference between these 2 metrics of inpatient intravenous antimicrobial consumption in assessing antimicrobial stewardship efficacy and antimicrobial resistance using vector autoregressive (VAR) models with time-series analysis.

Methods:

Differences between DOT and DASC were investigated at a tertiary-care center over 8 years using VAR models with 3 variables in the following order: (1) the monthly proportion of prospective audit and feedback (PAF) acceptance as an index of antimicrobial stewardship efficacy; (2) monthly DOT and DASC adjusted by 1,000 days present as indices of antimicrobial consumption; and (3) the monthly incidence of 5 organisms as an index of antimicrobial resistance.

Results:

The Granger causality test, which evaluates whether incorporating lagged variables can help predict other variables, showed that PAF activity contributed to DOT and DASC, which, in turn, contributed to the incidence of drug-resistant P. aeruginosa. Notably, only DASC helped predict the incidence of drug-resistant Enterobacterales. Another VAR analysis demonstrated that a high proportion of PAF acceptance was accompanied by decreased DASC in a given month, whereas increased DASC was accompanied by an increased incidence of drug-resistant Enterobacterales, unlike with DOT.

Conclusions:

The VAR models of PAF activity, antimicrobial consumption, and antimicrobial resistance suggested that DASC may more accurately reflect the impact of PAF on antimicrobial consumption and be superior to DOT for predicting the incidence of drug-resistant Enterobacterales.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Guidelines for ATC classification and DDD assignment 2023. World Health Organization website. https://www.whocc.no/filearchive/publications/2023_guidelines_web.pdf. Accessed March 8, 2023.Google Scholar
Polk, RE, Fox, C, Mahoney, A, Letcavage, J, MacDougall, C. Measurement of adult antibacterial drug use in 130 US hospitals: comparison of defined daily dose and days of therapy. Clin Infect Dis 2007;44:664670.CrossRefGoogle ScholarPubMed
Barlam, TF, Cosgrove, SE, Abbo, LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016;62:e51e77.CrossRefGoogle Scholar
Moehring, RW, Dodds Ashley, E, Ren, X, et al. Denominator matters in estimating antimicrobial use: a comparison of days present and patient days. Infect Control Hosp Epidemiol 2018;39:612615.CrossRefGoogle ScholarPubMed
National Healthcare Safety Network (NHSN). Antimicrobial use and resistance (AUR) module. Centers for Disease Control and Prevention website. https://www.cdc.gov/nhsn/pdfs/pscmanual/11pscaurcurrent.pdf. Accessed March 2, 2023.Google Scholar
Gerber, JS, Hersh, AL, Kronman, MP, Newland, JG, Ross, RK, Metjian, TA. Development and application of an antibiotic spectrum index for benchmarking antibiotic selection patterns across hospitals. Infect Control Hosp Epidemiol 2017;38:993997.CrossRefGoogle ScholarPubMed
Kakiuchi, S, Livorsi, DJ, Perencevich, EN, et al. Days of antibiotic spectrum coverage: a novel metric for inpatient antibiotic consumption. Clin Infect Dis 2022;75:567576.CrossRefGoogle ScholarPubMed
Sims, CA. Macroeconomics and reality. Econometrica 1980;48:148.CrossRefGoogle Scholar
Stock, JH, Watson, MW. Vector autoregressions. J Econ Perspect 2001;15:101115.CrossRefGoogle Scholar
Toth, H, Fesus, A, Kungler-Goracz, O, et al. Utilization of vector autoregressive and linear transfer models to follow up the antibiotic resistance spiral in gram-negative bacteria from cephalosporin consumption to colistin resistance. Clin Infect Dis 2019;69:14101421.CrossRefGoogle ScholarPubMed
Muratani, T, Inoue, M, Mitsuhashi, S. In vitro activity of T-3761, a new fluoroquinolone. Antimicrob Agents Chemother 1992;39:22932303.CrossRefGoogle Scholar
Fukuoka, Y, Ikeda, Y, Yamashiro, Y, Takahata, M, Todo, Y, Narita, H. In vitro and in vivo antibacterial activities of T-3761, a new quinolone derivative. Antimicrob Agents Chemother 1993;37:384392.CrossRefGoogle ScholarPubMed
Yanagihara, K, Kadota, J, Aoki, N, et al. Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2010: general view of the pathogens’ antibacterial susceptibility. J Infect Chemother 2015;21:410–420.CrossRefGoogle Scholar
Sader, HS, Rhomberg, PR, Farrell, DJ, Jones, RN. Arbekacin activity against contemporary clinical bacteria isolated from patients hospitalized with pneumonia. Antimicrob Agents Chemother 2015;59:32633270.CrossRefGoogle ScholarPubMed
Grayson, ML, Cosgrove, SE, Crowe, S, et al. Kucers’ The Use of Antibiotics, Seventh Edition. Boca Raton, FL: American Society for Microbiology/CRC Press; 2018.Google Scholar
Bennett, JE, Dolin, R, Blaser, MJ. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, Ninth Edition. Philadelphia, PA: Elsevier; 2020.Google Scholar
Honda, H, Murakami, S, Tagashira, Y, et al. Efficacy of a postprescription review of broad-spectrum antimicrobial agents with feedback: a 4-year experience of antimicrobial stewardship at a tertiary-care center. Open Forum Infect Dis 2018;5:ofy314.CrossRefGoogle ScholarPubMed
Tacconelli, E, Mazzaferri, F, de Smet, AM, et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant gram-negative bacteria carriers. Clin Microbiol Infect 2019;25:807817.CrossRefGoogle ScholarPubMed
Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268281.CrossRefGoogle ScholarPubMed
Abrigo, MRM, Love, I. Estimation of panel vector autoregression in Stata. Stata J 2016;16:778804.CrossRefGoogle Scholar
Swingler, EA, Song, M, Moore, SE, et al. Fluoroquinolone stewardship at a community health system: a decade in review. Antimicrob Steward Healthc Epidemiol 2022;2:e186.CrossRefGoogle Scholar
Karanika, S, Paudel, S, Grigoras, C, Kalbasi, A, Mylonakis, E. Systematic review and meta-analysis of clinical and economic outcomes from the implementation of hospital-based antimicrobial stewardship programs. Antimicrob Agents Chemother 2016;60:48404852.CrossRefGoogle ScholarPubMed
Zerr, DM, Miles-Jay, A, Kronman, MP, et al. Previous antibiotic exposure increases risk of infection with extended-spectrum beta-lactamase– and ampC-producing Escherichia coli and Klebsiella pneumoniae in pediatric patients. Antimicrob Agents Chemother 2016;60:42374243.CrossRefGoogle ScholarPubMed
Wibisono, A, Harb, G, Crotty, M, et al. Quantifying gram-negative resistance to empiric treatment after Repeat ExpoSure To AntimicRobial Therapy (RESTART). Open Forum Infect Dis 2022;9:ofac659.CrossRefGoogle Scholar
Honda, H, Murakami, S, Tokuda, Y, Tagashira, Y, Takamatsu, A. Critical national shortage of cefazolin in Japan: management strategies. Clin Infect Dis 2020;71:17831789.CrossRefGoogle ScholarPubMed
Meyer, E, Schwab, F, Schroeren-Boersch, B, Gastmeier, P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit Care 2010;14:R113.CrossRefGoogle ScholarPubMed
Raman, G, Avendano, EE, Chan, J, Merchant, S, Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2018;7:79.CrossRefGoogle ScholarPubMed
Barnsteiner, S, Baty, F, Albrich, WC, et al. Antimicrobial resistance and antibiotic consumption in intensive care units, Switzerland, 2009 to 2018. Euro Surveill 2021;26.Google ScholarPubMed
Abbara, S, Pitsch, A, Jochmans, S, et al. Impact of a multimodal strategy combining a new standard of care and restriction of carbapenems, fluoroquinolones and cephalosporins on antibiotic consumption and resistance of Pseudomonas aeruginosa in a French intensive care unit. Int J Antimicrob Agents 2019;53:416422.CrossRefGoogle Scholar
Pluss-Suard, C, Pannatier, A, Kronenberg, A, Muhlemann, K, Zanetti, G. Impact of antibiotic use on carbapenem resistance in Pseudomonas aeruginosa: is there a role for antibiotic diversity? Antimicrob Agents Chemother 2013;57:17091713.CrossRefGoogle Scholar
Slimings, C, Riley, TV. Antibiotics and healthcare facility-associated Clostridioides difficile infection: systematic review and meta-analysis 2020 update. J Antimicrob Chemother 2021;76:16761688.CrossRefGoogle ScholarPubMed
Anjewierden, S, Han, Z, Brown, AM, Donskey, CJ, Deshpande, A. Risk factors for Clostridioides difficile colonization among hospitalized adults: a meta-analysis and systematic review. Infect Control Hosp Epidemiol 2021;42:565572.CrossRefGoogle ScholarPubMed
Wen, Z, Wei, X, Xiao, Y, et al. Intervention study of the association of antibiotic utilization measures with control of extended-spectrum beta-lactamase (ESBL)–producing bacteria. Microbes Infect 2010;12:710715.CrossRefGoogle ScholarPubMed
Li, X, Xu, X, Yang, X, et al. Risk factors for infection and/or colonisation with extended-spectrum beta-lactamase–producing bacteria in the neonatal intensive care unit: a meta-analysis. Int J Antimicrob Agents 2017;50:622628.CrossRefGoogle ScholarPubMed
Tacconelli, E, De Angelis, G, Cataldo, MA, Pozzi, E, Cauda, R. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 2008;61:2638.CrossRefGoogle ScholarPubMed
McKinnell, JA, Miller, LG, Eells, SJ, Cui, E, Huang, SS. A systematic literature review and meta-analysis of factors associated with methicillin-resistant Staphylococcus aureus colonization at time of hospital or intensive care unit admission. Infect Control Hosp Epidemiol 2013;34:10771086.CrossRefGoogle ScholarPubMed
Granger, CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969;37:424438.CrossRefGoogle Scholar
D’Agata, EMC, Geffert, SF, McTavish, R, Wilson, F, Cameron, C. Acquisition of antimicrobial-resistant bacteria in the absence of antimicrobial exposure: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 2019;40:11281134.CrossRefGoogle ScholarPubMed
Tacconelli, E, Cataldo, MA, Dancer, SJ, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant gram-negative bacteria in hospitalized patients. Clin Microbiol Infect 2014;20 suppl 1:155.CrossRefGoogle Scholar
Langford, BJ, Soucy, JR, Leung, V, et al. Antibiotic resistance associated with he COVID-19 pandemic: a systematic review and meta-analysis. Clin Microbiol Infect 2023;29:302309.CrossRefGoogle Scholar
Supplementary material: File

Murakami et al. supplementary material

Murakami et al. supplementary material

Download Murakami et al. supplementary material(File)
File 3.5 MB