Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T08:11:55.789Z Has data issue: false hasContentIssue false

Comorbidities directly extracted from the hospital database for adjusting SSI risk in the new national semiautomated surveillance system in France: The SPICMI network

Published online by Cambridge University Press:  02 August 2023

Jérémy Picard*
Affiliation:
Service de maladies infectieuses et tropicales, CHRU Brest, Université de Bretagne Occidentale, Brest, France Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, F75013 Paris, France Centre de prévention des infections associées aux soins (CPias), Paris, France
Béatrice Nkoumazok
Affiliation:
Centre de prévention des infections associées aux soins (CPias), Paris, France
Isabelle Arnaud
Affiliation:
Centre de prévention des infections associées aux soins (CPias), Paris, France
Delphine Verjat-trannoy
Affiliation:
Centre de prévention des infections associées aux soins (CPias), Paris, France
Pascal Astagneau
Affiliation:
Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, F75013 Paris, France Centre de prévention des infections associées aux soins (CPias), Paris, France
*
Corresponding author: Jérémy Picard; Email: jeremy.picard@chu-brest.fr

Abstract

Objective:

To evaluate the performance of a comorbidity-based risk-adjustment model for surgical-site infection (SSI) reporting and benchmarking using a panel of variables extracted from the hospital discharge database (HDD), including comorbidities, compared to other models that use variables from different data sources.

Methods:

The French national surveillance program for SSI (SPICMI) has collected data from voluntary hospitals in the first 6 months of 2020 and 2021, for 16 selected surgery procedures, using a semiautomated algorithm for detection. Four risk-adjustment models were selected with logistic regression analysis, combining the different patterns of variables: National Nosocomial Infections Surveillance System (NNIS) risk-index components, individual operative data, and 6 individual comorbidities according to International Classification of Disease, Tenth Revision (ICD-10) diagnosis: obesity, diabetes, malnutrition, hypertension, cancer, or immunosuppression. Areas under the curve (AUCs) were calculated and compared.

Results:

Overall, 294 SSI were detected among 11,975 procedures included. All 6 comorbidities were related to SSI in the univariate analysis. The AUC of the selected model including comorbidities (0.675; 95% confidence interval [CI], 0.642–0.707), was significantly higher than the AUC of the model without comorbidities (0.641; 95% CI, 0.609–0.672; P = .016) or the AUC using the NNIS-index components (0.598; 95% CI, 0.564–0.630; P < .001). The HDD-based model AUC (0.659; 95% CI, 0.625–0.692) did not differ significantly from the selected model without comorbidities (P = .23).

Conclusion:

Including HDD-based comorbidities as patient case-mix variables instead of NNIS risk index factors could be an effective approach for risk-adjustment of automated SSI surveillance more widely accessible to hospitals.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Enquête nationale de prévalence des infections nosocomiales et des traitements anti-infectieux en établissements de santé, mai-juin 2017. [National survey on the prevalence of nosocomial infections and anti-infective treatments in healthcare establishments, May–June 2017]. Santé publique France website. https://www.santepubliquefrance.fr/maladies-et-traumatismes/infections-associees-aux-soins-et-resistance-aux-antibiotiques/infections-associees-aux-soins/documents/enquetes-etudes/enquete-nationale-de-prevalence-des-infections-nosocomiales-et-des-traitements-anti-infectieux-en-etablissements-de-sante-mai-juin-2017. Published 2017. Accessed June 2023.Google Scholar
Impact of surgical-site infection on healthcare costs and patient outcomes: a systematic review in six European countries J Hosp Infect 2017;96:115.CrossRefGoogle Scholar
Culver, DH, Horan, TC, Gaynes, RP, et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. Am J Med 1991;91:S152S157.CrossRefGoogle ScholarPubMed
Surveillance of surgical-site infections and prevention indicators in European hospitals: HAI net SSI protocol, version 2.2. European Centre for Disease Prevention and Control website. https://www.ecdc.europa.eu/sites/default/files/documents/HAI-Net-SSI-protocol-v2.2.pdf. Published 2017. Accessed June 2023.Google Scholar
Chalfine, A, Cauet, D, Lin, WC, et al. Highly sensitive and efficient computer–assisted system for routine surveillance for surgical-site infection. Infect Control Hosp Epidemiol 2006;27:794801.CrossRefGoogle ScholarPubMed
Kuczewski, E, Munier-Marion, E, Amour, S, et al. How to save time in surveillance without losing quality: comparison of two methods of surgical-site infection surveillance in orthopaedic prosthetics in a French university hospital. J Infect Prev 2020;21:202205.CrossRefGoogle Scholar
Knepper, BC, Young, H, Jenkins, TC, Price, CS. Time-saving impact of an algorithm to identify potential surgical-site infections. Infect Control Hosp Epidemiol 2013;34:10941098.CrossRefGoogle ScholarPubMed
Protocole de surveillance SPICMI 2021. Réseau de Prévention des Infections associées aux Soins website. https://www.cpias-ile-de-france.fr/surveillance/spicmi/surveillance/protocole-surveillance-2021.pdf. Published 2021. Accessed June 2023.Google Scholar
National Healthcare Safety Network. 2022 NHSN patient safety component manual. Centers for Disease Control and Prevention website. https://www.cdc.gov/nhsn/pdfs/validation/2022/pcsmanual_2022_508.pdf. Published 2022. Accessed June 2023.Google Scholar
Surveillance des infections du site opératoire dans les établissements de santé. Réseau ISO-Raisin, France. Résultats 2017:220.Google Scholar
Molla, M, Temesgen, K, Seyoum, T, Melkamu, M. Surgical-site infection and associated factors among women underwent cesarean delivery in Debretabor General Hospital, northwest Ethiopia: hospital based cross sectional study. BMC Pregnancy Childbirth 2019;19:317.CrossRefGoogle ScholarPubMed
Cai, W, Wang, L, Wang, W, Zhou, T. Systematic review and meta-analysis of the risk factors of surgical-site infection in patients with colorectal cancer. Transl Cancer Res 2022;11:857871.CrossRefGoogle ScholarPubMed
Yang, J, Zhang, X, Liang, W. A retrospective analysis of factors affecting surgical-site infection in orthopaedic patients. J Int Med Res 2020;48:030006052090777.CrossRefGoogle ScholarPubMed
Martin, ET, Kaye, KS, Knott, C, et al. Diabetes and risk of surgical-site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 2016;37:8899.CrossRefGoogle ScholarPubMed
Xu, Z, Qu, H, Kanani, G, Guo, Z, Ren, Y, Chen, X. Update on risk factors of surgical-site infection in colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis 2020;35:21472156.CrossRefGoogle ScholarPubMed
Miwa, S, Shirai, T, Yamamoto, N, et al. Risk factors for surgical-site infection after malignant bone tumor resection and reconstruction. BMC Cancer 2019;19:33.CrossRefGoogle ScholarPubMed
Anatone, AJ, Danford, NC, Jang, ES, Smartt, A, Konigsberg, M, Tyler, WK. Risk factors for surgical-site infection in orthopaedic oncology. J Am Acad Orthop Surg 2020;28:e923e928.CrossRefGoogle ScholarPubMed
Tsantes, AG, Papadopoulos, DV, Lytras, T, et al. Association of malnutrition with surgical-site infection following spinal surgery: systematic review and meta-analysis. J Hosp Infect 2020;104:111119.CrossRefGoogle ScholarPubMed
Thelwall, S, Harrington, P, Sheridan, E, Lamagni, T. Impact of obesity on the risk of wound infection following surgery: results from a nationwide prospective multicentre cohort study in England. Clin Microbiol Infect 2015;21:1008.e1–1008.e8.CrossRefGoogle ScholarPubMed
van Buuren, S, Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J Stat Soft 2011;45(3):167.Google Scholar
Cottrell, G, Cot, M, Mary, JY. L’imputation multiple des données manquantes aléatoirement : concepts généraux et présentation d’une méthode Monte-Carlo. Rev Dépidémiologie Santé Publique 2009;57:361372.CrossRefGoogle Scholar
Rubin, DB. Multiple Imputation for Nonresponse in Surveys. New York: Wiley; 1987.CrossRefGoogle Scholar
Zhao, Y, Long, Q. Variable selection in the presence of missing data: imputation-based methods: variable selection in the presence of missing data. Wiley Interdiscip Rev Comput Stat 2017;9:e1402.CrossRefGoogle ScholarPubMed
DeLong, ER, DeLong, DM, Clarke-Pearson, DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837.CrossRefGoogle ScholarPubMed
Grammatico-Guillon, L, Miliani, K, Banaei-Bouchareb, L, et al. A computerized indicator for surgical-site infection (SSI) assessment after total hip or total knee replacement: The French ISO-ORTHO indicator. Infect Control Hosp Epidemiol 2022;43:11711178.CrossRefGoogle ScholarPubMed
Rioux, C, Grandbastien, B, Astagneau, P. The standardized incidence ratio as a reliable tool for surgical-site infection surveillance. Infect Control Hosp Epidemiol 2006;27:817824.CrossRefGoogle ScholarPubMed
Jackson, SS, Leekha, S, Magder, LS, et al. Electronically available comorbidities should be used in surgical-site infection risk adjustment. Clin Infect dis 2017;65:803810.CrossRefGoogle ScholarPubMed
Angel García, D, Martínez Nicolás, I, García Marín, JA, Soria Aledo, V. Risk-adjustment models for clean and colorectal surgery surgical-site infection for the Spanish health system. Int J Qual Health Care 2020;32:599608.CrossRefGoogle ScholarPubMed
Grammatico-Guillon, L, Baron, S, Gaborit, C, Rusch, E, Astagneau, P. Quality assessment of hospital discharge database for routine surveillance of hip and knee arthroplasty–related infections. Infect Control Hosp Epidemiol 2014;35:646651.CrossRefGoogle ScholarPubMed
Verberk, JDM, Aghdassi, SJS, Abbas, M, et al. Automated surveillance systems for healthcare-associated infections: results from a European survey and experiences from real-life utilization. J Hosp Infect 2022;122:3543.CrossRefGoogle ScholarPubMed