Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-22T13:24:28.277Z Has data issue: false hasContentIssue false

Bacteriological Validation of a New Apparatus for Disinfection of Hospital Waste at the Point of Disposal

Published online by Cambridge University Press:  02 January 2015

Matthieu Eveillard*
Affiliation:
Laboratoire Central, EPS Perray-Vaucluse, Epinay-sur-Orge, France
Claude Sarnel
Affiliation:
Laboratoire Central, EPS Perray-Vaucluse, Epinay-sur-Orge, France
Clotilde Fourniat
Affiliation:
Département de Microbiologie, Faculté de Pharmacie, Université Paris XI, Châtenay-Malabry, France
Florence Rivoal
Affiliation:
Laboratoire Central, EPS Perray-Vaucluse, Epinay-sur-Orge, France
Abla Daroukh
Affiliation:
Laboratoire Central, EPS Perray-Vaucluse, Epinay-sur-Orge, France
Jacqueline Huchet
Affiliation:
Pharmacie, Hôpital Saint-Joseph, Paris, France
Michel Chaty
Affiliation:
Société SGN, Bagnols sur Cèze, France
Serge Hauss
Affiliation:
Société SGN, Bagnols sur Cèze, France
Pierre Bourlioux
Affiliation:
Laboratoire Central, EPS Perray-Vaucluse, Epinay-sur-Orge, France Département de Microbiologie, Faculté de Pharmacie, Université Paris XI, Châtenay-Malabry, France
*
Unité d'Hygiène et de Prévention des Infections Nosocomiales, Centre Hospitalier Universitaire d'Amiens-Hôpital Nord, F-80054 Amiens Cédex 1, France

Abstract

Objectives:

To evaluate the ability of a new apparatus (Dipsys 25, Société SGN, Bagnols sur Cèze, France) to disinfect biomedical waste, including both potentially infectious agents and the normal saprophytic flora of the waste.

Methods:

Disinfection was assessed using standard methods (reference strains were fixed on reference carriers according to the French AFNOR methods) and nonstandard assays. Assays in conditions of hospital use, evaluations of bacterial survival during storage, sporicidal effect, and spore survival during storage were performed in parallel. Finally, bactericidal effect in extreme conditions (association of high contamination and high bacterial protection conditions) was tested with normal fecal flora. Bacterial counts were performed after treatment by the apparatus and without treatment (controls). All tests were carried out in triplicate.

Results:

In all treated carriers, a bacterial population decrease of at least 5 log10 was obtained. Assays performed in hospital-use conditions did not show any bacterial growth. Concerning the evaluation of sporicidal effect and spore revival during conservation, a minimum reduction of 5 log10 was observed in all assays performed, without survival. Finally, concerning assays in extreme conditions, the decrease of bacterial population was between 5 log10 and 10 log10 for vegetative anaerobes of normal fecal flora.

Conclusion:

Under our study conditions, the study apparatus reduced the tested microbial populations by a minimal factor of 5 log10. The main advantage of the apparatus is the opportunity to treat contaminated waste inside hospital wards, at the point of initial collection, without pulverization, by nonspecialized staff.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rutala, WA, Mayhall, CG. Medical waste. Infect Control Hosp Epidemiol 1992;13:3848.Google Scholar
2. Phillips, G. Microbiological aspects of clinical waste. J Hosp Infect 1999;41:16.Google Scholar
3. Collins, CH, Kennedy, DA. The microbiological hazards of municipal and clinical wastes. J Appl Bacteriol 1992;73:16.Google Scholar
4. Keene, JH. Medical waste: a minimal hazard. Infect Control Hosp Epidemiol 1991;12:682685.Google Scholar
5. Daschner, F. The hospital and pollution: role of the hospital epidemiologist in protecting the environment. In: Wenzel, RP, ed. Prevention and Control of Nosocomial Infections. 3rd ed. Baltimore, MD: Williams & Wilkins; 1997:595605.Google Scholar
6. Blenkharn, JI. The disposal of clinical wastes. J Hosp Infect 1995;30(suppl):514520.Google Scholar
7. Bencko, V, Culikova, H. Hospital waste management practice in the Czech Republic. Cent Eur J Public Health 1993;1:5759.Google Scholar
8. Liss, GM, Crimi, C, Jaczek, KH, Anderson, A, Slattery, B, D'Cunha, C. Improper office disposal of needles and other sharps: an occupational hazard outside of health care institutions. Can J Public Health 1990;81:417420.Google Scholar
9. Springthorpe, VS, Kennedy, ME. Infect Control Steriliz Technol 1998;4:3843.Google Scholar
10. Association Française de Normalisation (AFNOR). Antiseptiques et dés-infectants utilisés à l'état liquide miscibles à l'eau et neutralisables: détermination de l'activité bactéricide en présence de substances interférentes de référence. NFT 72-170. Paris, France: Association Française de Normalisation; 1988.Google Scholar
11. Association Française de Normalisation (AFNOR). Antiseptiques et dés-infectants: conservation et contrôle des souches bactériennes utilisées pour la détermination de l'activité bactéricide. NFT 72-140. Paris, France: Association Française de Normalisation; 1988.Google Scholar
12. Association Française de Normalisation (AFNOR). Antiseptiques et dés-infectants utilisés à l'état liquide, miscibles à l'eau et neutralisables: détermination de l'activité sporicide. NFT 72-230. Paris, France: Association Française de Normalisation; 1988.Google Scholar
13. Association Française de Normalisation (AFNOR). Désinfectant de contact utilisés à l'état liquide, miscibles à l'eau: détermination de l'activité bactéricide, sporicide et fongicide par la méthode des porte-germes. NFT 72-190. Paris, France: Association Française de Normalisation; 1988.Google Scholar
14. The Hospital Infection Society. Disinfection in washing machines. J Hosp Infect 1983;4:101102.Google Scholar
15. Pleus, RC, Kelly, KE. Health effects from hazardous waste incineration facilities: five case studies. Toxicol Ind Health 1996;12:277287.CrossRefGoogle ScholarPubMed
16. Blenkharn, JI, Oakland, D. Emission of viable bacteria with the exhaust flue gases from hospital incinerators. J Hosp Infect 1989;14:7378.Google Scholar
17. Scott, GM, Jones, GH. Emission of a viable bacteria in the exhaust flue from a waste incinerator. J Hosp Infect 1990;16:183184.Google Scholar
18. Goldblith, SA, Wang, DIC. Effect of microwaves on Escherichia coli and Bacillus subtilis . Appl Microbiol 1967;17:106110.Google Scholar
19. Lechowich, RV, Beuchat, LR, Fox, KI, Webster, FH. Procedures for evaluating the effects of 2,450 megahertz microwaves upon Streptococcus faecalis and Saccharomyces cerevisiae . Appl Microbiol 1969;17:106110.Google Scholar
20. Vela, GR, Wu, JF. Mechanism of lethal action of 2,450 Mhz radiation on microorganisms. Appl Environ Microbiol 1979;37:550553.CrossRefGoogle Scholar
21. Najdowski, L, Dragas, AZ, Kotnik, V. The killing activity of microwaves on some non-sporogenic and sporogenic medically important bacterial strains. J Hosp Infect 1991;19:239247.Google Scholar
22. Jeng, DKH, Kaczmarek, KA, Woodworth, AG, Balasky, G. Mechanisms of microwave sterilization in the dry state. Appl Environ Microbiol 1987;53:21332137.Google Scholar
23. Furia, L, Hill, DW, Gandhi, OP. Effect of milimetre-wave irradiation on growth of Saccharomyces cerevisiae . IEEE Trans Biomed Engineer 1986;33:993999.Google Scholar
24. Fujikawa, H, Ushioda, H, Kudo, Y. Kinetics of Escherichia coli destruction by microwave irradiation. Appl Environ Microbiol 1992;58:920924.Google Scholar
25. Escaf, M, Shurtleff, S. A program for reducing biomedical waste: the Wellesley Hospital experience. Can J Infect Control 1996;11:711.Google Scholar
26. Rutala, WA. Disinfection, sterilization and waste disposal. In: Wenzel, RP, ed. Prevention and Control of Nosocomial Infections. 3rd ed. Baltimore, MD: Williams & Wilkins; 1997:539593.Google Scholar