Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T17:34:01.441Z Has data issue: false hasContentIssue false

Reportable infections following colon surgery in a large public healthcare system in New York City: The consequences of being a level 1 trauma center

Published online by Cambridge University Press:  18 July 2023

Mary L. Fornek
Affiliation:
Department of Infection Prevention, NYC Health+Hospitals/Central Office, New York, New York
Subhan Ata
Affiliation:
Department of Medicine, NYC Health+Hospitals/Kings County, Brooklyn, New York
Edwin Jimenez
Affiliation:
Department of Surgery, NYC Health+Hospitals/Kings County, Brooklyn, New York
Marie Abdallah
Affiliation:
Department of Ambulatory Care, NYC Health+Hospitals/Kings County, Brooklyn, New York
Subin Sunny
Affiliation:
Department of Ambulatory Care, NYC Health+Hospitals/Kings County, Brooklyn, New York
Jennifer Lee
Affiliation:
Department of Ambulatory Care, NYC Health+Hospitals/Kings County, Brooklyn, New York
Briana Episcopia
Affiliation:
Department of Infection Prevention, NYC Health+Hospitals/Kings County, Brooklyn, New York
Valery Roudnitsky
Affiliation:
Department of Surgery, NYC Health+Hospitals/Kings County, Brooklyn, New York
John Quale*
Affiliation:
Department of Medicine, NYC Health+Hospitals/Kings County, Brooklyn, New York
*
Corresponding author: John Quale; Email: john.quale@nychhc.org

Abstract

Objectives:

To examine differences in risk factors and outcomes of patients undergoing colon surgery in level 1 trauma centers versus other hospitals and to investigate the potential financial impact of these reportable infections.

Design:

Retrospective cohort study between 2015 and 2022.

Setting:

Large public healthcare system in New York City.

Participants:

All patients undergoing colon surgery; comparisons were made between (1) all patients undergoing colon surgery at the level 1 trauma centers versus patients at the other hospitals and (2) the nontrauma and trauma patients at the level 1 trauma centers versus the nontrauma patients at other hospitals.

Results:

Of 5,217 colon surgeries reported, 3,531 were at level 1 trauma centers and 1686 at other hospitals. Patients at level 1 trauma centers had significantly increased American Society of Anesthesiology (ASA) scores, durations of surgery, rates of delayed wound closure, and rates of class 4 wounds, resulting in higher SIRs (1.1 ± 0.15 vs 0.75 ± 0.18; P = .0007) compared to the other hospitals. Compared to the nontrauma patients at the other hospitals, both the nontrauma and trauma patients at the level 1 trauma centers had higher ASA scores, rates of delayed wound closure, and of class 4 wounds. The SIRs of the nontrauma patients (1.16 ± 1.29; P = .008) and trauma patients (1.26 ± 2.69; P = .066) at the level 1 trauma center were higher than the SIRs of nontrauma patients in the other hospitals (0.65 ± 1.18).

Conclusions:

Patients undergoing colon surgery at level 1 trauma centers had increased complexity of surgery compared to the patients in other hospitals. Until there is appropriate adjustment for these risk factors, the use of infections following colon surgery as a reportable quality measure should be re-evaluated.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shaw, E, Gomila, A, Piriz, M, et al. Multistate modelling to estimate excess length of stay and risk of death associated with organ/space infection after elective colorectal surgery. J Hosp Infect 2018;100:400405.CrossRefGoogle ScholarPubMed
Turner, MC, Migaly, J. Surgical site infection: the clinical and economic impact. Clin Colon Rectal Surg 2019;32:157165.Google ScholarPubMed
Gantz, O, Zagadailov, P, Merchant, AM. The cost of surgical site infections after colorectal surgery in the United States from 2001 to 2012: a longitudinal analysis. Am Surgeon 2019;85:142149.CrossRefGoogle ScholarPubMed
Astagneau, P, Rioux, C, Golliot, F, Brücker, G; INCISO Network Study Group. Morbidity and mortality associated with surgical site infections: results from the 1997–1999 INCISO surveillance. J Hosp Infect 2001;48:267274.CrossRefGoogle Scholar
Centers for Medicare and Medicaid Services, Department of Health and Human Services. Hospital Inpatient Prospective Payment Systems for Acute-Care Hospitals and the Long-Term Care Hospital Prospective Payment System and Policy Changes and Fiscal Year 2023 Rates; Quality Programs and Medicare Promoting Interoperability Program Requirements for Eligible Hospitals and Critical Access Hospitals; Costs Incurred for Qualified and NonQualified Deferred Compensation Plans; and Changes to Hospital and Critical Access Hospital Conditions of Participation. Final Rule. Fed Reg 2022; 87:4878049499.Google Scholar
Magill, SS, O’Leary, E, Janelle, SJ, et al. Changes in prevalence of healthcare-associated infections in US hospitals. N Engl J Med 2018;379:17321744.CrossRefGoogle Scholar
Guerrero, MA, Anderson, B, Carr, G, et al. Adherence to a standardized infection reduction bundle decreases surgical site infections after colon surgery: a retrospective cohort study on 526 patients. Patient Saf Surg 2021;15:15.CrossRefGoogle ScholarPubMed
Reese, SM, Knepper, B, Amiot, M, Beard, J, Campion, E, Young, H. Implementation of colon surgical site infection prevention bundle—the successes and challenges. Amer J Infect Cont 2020;48:12871291.CrossRefGoogle ScholarPubMed
Stulberg, JJ, Delaney, CP, Neuhauser, DV, Aron, DC, Fu, P, Koroukian, SM. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA 2010;303:24792485.CrossRefGoogle ScholarPubMed
Kobayashi, M, Mohri, Y, Inoue, Y, Okita, Y, Miki, C, Kusunoki, M. Continuous follow-up of surgical site infections for 30 days after colorectal surgery. World J Surg 2008;32:11421146.CrossRefGoogle ScholarPubMed
Hawn, MT, Vick, CC, Richman, J, et al. Surgical site infection prevention: time to move beyond the surgical care improvement program. Ann Surg 2011;254:494499.CrossRefGoogle ScholarPubMed
Keenan, JE, Speicher, PJ, Thacker, JKM, Walter, M, Kuchibhatla, M, Mantyh, CR. The preventive surgical site infection bundle in colorectal surgery: an effective approach to surgical site infection reduction and health care cost savings. JAMA Surg 2014;149:10451052.CrossRefGoogle ScholarPubMed
Park, CM, Ha, TS, Lee, WY, et al. Implementing a multidisciplinary care bundle to reduce colon surgical site infections. Ann Surg Treat Res 2020;99:285293.CrossRefGoogle ScholarPubMed
van Walraven, C, Musselman, R. The surgical site infection risk score (SSIRS): a model to predict the risk of surgical site infections. PLoS One 2013;8:e67167.CrossRefGoogle Scholar
Segal, CG, Waller, DK, Tilley, B, Piller, L, Bilimoria, K. An evaluation of differences in risk factors for individual types of surgical site infections after colon surgery. Surgery 2014;156:12531260.CrossRefGoogle ScholarPubMed
Hübner, M, Diana, M, Zanetti, G, et al. Surgical site infections in colon surgery: the patient, the procedure, the hospital, and the surgeon. Arch Surg 2011;146:12401245.CrossRefGoogle ScholarPubMed
Tang, R. Risk factors for surgical site infection after elective resection of the colon and rectum: a single-center prospective study of 2809 consecutive patients. Ann Surgery 2001;234:181189.CrossRefGoogle Scholar
Caroff, DA, Chan, C, Kleinman, K, et al. Association of open approach vs laparoscopic approach with risk of surgical site infection after colon surgery. JAMA Netw Open 2019;2:e1913570.CrossRefGoogle ScholarPubMed
Qi, AC, Peacock, K, Luke, AA, Barker, A, Olsen, MA, Joynt Maddox, KE. Associations between social risk factors and surgical site infections after colectomy and abdominal hysterectomy. JAMA Netw Open 2019;2:e1912339.CrossRefGoogle ScholarPubMed
Anderson, DJ, Podgorny, K, Berríos-Torres, SI, et al. Strategies to prevent surgical site infections in acute-care hospitals: 2014 update. Infect Control Hosp Epidemiol 2014;35:605627.CrossRefGoogle ScholarPubMed
Berríos-Torres, SI, Umscheid, CA, Bratzler, DW, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection. JAMA Surg 2017;152:784791.CrossRefGoogle ScholarPubMed
Hajirawala, LN, Legare, TB, Tiu, SPT, et al. The impact of a colorectal care bundle for surgical site infections at an academic disproportionate share hospital with a level I trauma center. Am Surgeon 2020;86:848855.CrossRefGoogle ScholarPubMed
Wei, S, Green, C, Kao, LS, et al. Accurate risk stratification for development of organ/space surgical site infections after emergent trauma laparotomy. J Trauma Acute Care Surg 2019;86:226231.CrossRefGoogle ScholarPubMed
Boston, KM, Ellsworth, M, Thomas, J, McInnis-Cole, TA, Ostrosky-Zeichner, L. Impact of penetrating trauma on surgical site infection standardized infection ratio (SIR) for colon procedures. Open Forum Infect Dis 2021;8 suppl 1:S60S61.CrossRefGoogle Scholar
Antimicrobial prophylaxis for surgery. Med Lett Drugs Ther 2016;58:6368.Google Scholar
Herrod, PJ, Boyd-Carson, H, Doleman, B, et al. Prophylactic antibiotics for penetrating abdominal trauma: duration of use and antibiotic choice. Cochrane Database Syst Rev 2019;12:CD010808.Google ScholarPubMed
Pop-Vicas, A, Stern, R, Osman, F, Safdar, N. Variability in infection surveillance methods and impact on surgical site infection rates. Am J Infect Control 2021;49:188193.CrossRefGoogle ScholarPubMed
Morgan, DM, Kamdar, N, Regenbogen, SE, et al. Evaluation of the methods used by Medicare’s Hospital-Acquired Condition Reduction Program to identify outlier hospitals for surgical site infection. J Am Coll Surg 2018;227:346356.CrossRefGoogle ScholarPubMed
Minami, CA, Dahlke, AR, Barnard, C, et al. Association between hospital characteristics and performance on the new Hospital-Acquired Condition Reduction Program’s surgical site infection measures. JAMA Surg 2016;151:777779.CrossRefGoogle ScholarPubMed
Caroff, DA, Wang, R, Zhang, Z, et al. The limited utility of ranking hospitals based on their colon surgery infection rates. Clin Infect Dis 2021;72:9098.Google ScholarPubMed
Ryan, AM. Will value-based purchasing increase disparities in care? N Engl J Med 2013;369:24722474.CrossRefGoogle ScholarPubMed
Hsu, HE, Wang, R, Broadwell, C, et al. Association between federal value-based incentive programs and healthcare-associated infection rates in safety-net and non–safety-net hospitals. JAMA Netw Open 2020;3:e209700.CrossRefGoogle ScholarPubMed
Sankaran, R, Sukul, D, Nuliyalu, U, et al. Changes in hospital safety following penalties in the US Hospital-Acquired Condition Reduction Program: retrospective cohort study. BMJ 2019;366:l4109.CrossRefGoogle ScholarPubMed
Gilman, M, Hockenberry, JM, Adams, EK, Milstein, AS, Wilson, IB, Becker, ER. The financial effect of Value-Based Purchasing and the Hospital Readmissions Reduction Program on safety-net hospitals in 2014: a cohort study. Ann Intern Med 2015;163:427436.CrossRefGoogle ScholarPubMed
Rajaram, R, Chung, JW, Kinnier, CV, et al. Hospital characteristics associated with penalties in the Centers for Medicare & Medicaid Services Hospital-Acquired Condition Reduction Program. JAMA 2015;314:375383.CrossRefGoogle ScholarPubMed