Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-7wfd5 Total loading time: 0.279 Render date: 2021-10-26T21:31:04.103Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Controlling Legionella in Hospital Water Systems: Experience With the Superheat-and-Flush Method and Copper-Silver Ionization

Published online by Cambridge University Press:  02 January 2015

Janet E. Stout
Affiliation:
Special Pathogens Laboratory and Infectious Disease Section, Veterans' Affairs Pittsburgh Health Care System, University Drive Division University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
Yu-Sen E. Lin
Affiliation:
Special Pathogens Laboratory and Infectious Disease Section, Veterans' Affairs Pittsburgh Health Care System, University Drive Division
Angella M. Goetz
Affiliation:
Special Pathogens Laboratory and Infectious Disease Section, Veterans' Affairs Pittsburgh Health Care System, University Drive Division
Robert R. Muder*
Affiliation:
Special Pathogens Laboratory and Infectious Disease Section, Veterans' Affairs Pittsburgh Health Care System, University Drive Division University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
*
VA Medical Center, Infectious Disease Section, University Drive C, Pittsburgh, PA 15240

Abstract

Objective:

To evaluate the effect of copper-silver ionization on Legionella colonization and nosocomial legionnaires' disease and to compare the efficacy of metal ions versus the super-heat-and-flush method of disinfection.

Design:

Prospective determination over a 36-month period of copper and silver ion concentrations in the recirculating hot-water system, Legionella colonization of the hospital water distribution system, and cases of nosocomial legionnaires' disease. Retrospective comparison of results with the previous 13 years, during which the superheat-and-flush method was used.

Setting:

The Pittsburgh Veterans' Affairs Health Care System (University Drive Division) acut-care hospital.

Intervention:

Three copper-silver ionization systems were installed on the hot-water distribution system in November 1994.

Results:

The average number of cases of legionnaires‘ disease per year and the percentage of distal sites positive for Legionella pneumophila for the superheat-and-flush method versus the copper-silver ionization method was six cases with 15% positivity versus two cases with 4% positivity, respectively. The reduction in Legionella colonization after copper-silver ionization was significant (P<.05) compared to the superheat and flush. Mean copper and silver ion concentrations (mg/L) were 0.29 and 0.054 from hot-water tanks, and 0.17 and 0.04 from distal outlets, respectively.

Conclusions:

We conclude that a properly maintained and monitored copper-silver ionization system was more effective than the superheat-and-flush method for reducing the recovery of Legionella from the hospital water distribution system.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Best, M, Yu, VL, Stout, J, Goetz, A, Muder, RR, Taylor, F. Legionellaceae in the hospital water supply—epidemiological link with disease and evaluation of a method of control of nosocomial legionnaires‘ disease and Pittsburgh pneumonia. Lancet 1983;2:307310.CrossRefGoogle ScholarPubMed
2.Thurman, RB, Gerba, CP. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Critical Reviews in Environmental Control 1989;18(4):295314.CrossRefGoogle Scholar
3.Liu, Z, Stout, JE, Tedesco, L, Boldin, M, Hwang, C, Diven, WF, et al.Controlled evaluation of copper-silver ionization in eradicating Legionella pneumophila from a hospital water distribution system. J Infect Dis 1994;169:919922.CrossRefGoogle ScholarPubMed
4.Lin, YE, Vidic, RD, Stout, JE, Yu, VL. Individual and combined effects of copper and silver ions on inactivation of Legionella pneumophila. Water Research 1996;30:19051913.CrossRefGoogle Scholar
5.Stout, JE, Joly, J, Para, M, Plouffe, J, Ciesielski, C, Blaser, MJ, et al.Comparison of molecular methods for subtyping patients and epidemiologi-cally-linked environmental isolates of L pneumophila. J Infect Dis 1988;157:486494.CrossRefGoogle Scholar
6.Chang, FY, Jacobs, SL, Colodny, SM, Stout, JE, Yu, VL. Nosocomial legionnaires‘ disease caused by Legionella pneumophila serogroup 5: laboratory and epidemiological infection. J Infect Dis 1996;174:11161119.CrossRefGoogle Scholar
7.Vickers, RM, Stout, JE, Yu, VL, Rihs, JD. Manual of culture methodology for Legionella. Semin Respir Infect 1987;2:274279.Google ScholarPubMed
8.Marrie, TJ, Haldane, D, Macdonald, S. Control of endemic nosocomial legionnaires‘ disease by using sterile potable water for high risk patients. Epidemiol Infect 1991;107:591605.CrossRefGoogle ScholarPubMed
9.Hutchinson, DN. Nosocomial legionellosis. Reviews of Medical Microbiology 1990;1:108115.Google Scholar
10.Joseph, CA, Watson, JM, Harrison, TG, Bartlett, CLR. Nosocomial legionnaires' disease in England and Wales. Epidemiol Infect 1994;112:329345.CrossRefGoogle ScholarPubMed
11.Helms, CM, Massanari, M, Wenzel, RP, Pfaller, MA, Mayer, NP, Hall, N. Legionnaires' disease associated with a hospital water system: a five year progress report on continuous hyperchlorination. JAMA 1988;259:24232427.CrossRefGoogle ScholarPubMed
12.Swan, SH, Waller, K, Hopkins, B, Windham, G, Fenster, L, Schaefer, C, et al.A prospective study of spontaneous abortion: relation to amount and source of drinking water consumed in early pregnancy. Epidemiology 1998;9:126133.CrossRefGoogle ScholarPubMed
13.Mietzner, S, Schwille, RC, Farley, A, Wald, ER, Ge, JH, States, SJ, et al.Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high volume hot water plumbing systems in hospitals. Am J Infect Control 1997;25:452457.CrossRefGoogle ScholarPubMed
14.Lin, YE, Stout, JE, Yu, VL, Vidic, RD. Disinfection of water distribution systems for Legionella. Semin Respir Infect 1998;13:147149.Google ScholarPubMed
15.Goetz, A, Yu, VL. Copper-silver ionization: cautious optimism for Legionel-la disinfection and implications for environmental culturing. Am J Infect Control 1997;25:449451.CrossRefGoogle ScholarPubMed
47
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Controlling Legionella in Hospital Water Systems: Experience With the Superheat-and-Flush Method and Copper-Silver Ionization
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Controlling Legionella in Hospital Water Systems: Experience With the Superheat-and-Flush Method and Copper-Silver Ionization
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Controlling Legionella in Hospital Water Systems: Experience With the Superheat-and-Flush Method and Copper-Silver Ionization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *