Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T08:21:53.543Z Has data issue: false hasContentIssue false

UNIVERSAL ENVELOPING ALGEBRAS OF PBW TYPE*

Published online by Cambridge University Press:  02 August 2011

ALESSANDRO ARDIZZONI*
Affiliation:
University of Ferrara, Department of Mathematics, Via Machiavelli 35, Ferrara I-44121, Italy e-mail: alessandro.ardizzoni@unife.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We continue our investigation of the general notion of universal enveloping algebra introduced in [A. Ardizzoni, A Milnor–Moore type theorem for primitively generated braided Bialgebras, J. Algebra 327(1) (2011), 337–365]. Namely, we study a universal enveloping algebra when it is of Poincaré–Birkhoff–Witt (PBW) type, meaning that a suitable PBW-type theorem holds. We discuss the problem of finding a basis for a universal enveloping algebra of PBW type: as an application, we recover the PBW basis both of an ordinary universal enveloping algebra and of a restricted enveloping algebra. We prove that a universal enveloping algebra is of PBW type if and only if it is cosymmetric. We characterise braided bialgebra liftings of Nichols algebras as universal enveloping algebras of PBW type.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Ardizzoni, A., Separable functors and formal smoothness, J. K-theory 1 (3) (2008), 535582.CrossRefGoogle Scholar
2.Ardizzoni, A., A Milnor–Moore type theorem for primitively generated braided bialgebras, J. Algebra 327 (1) (2011), 337365.CrossRefGoogle Scholar
3.Ardizzoni, A., On primitively generated braided Bialgebras, Algebr. Represent. Theory, to appear (doi:10.1007/s10468-010-9257-z).CrossRefGoogle Scholar
4.Ardizzoni, A., On the combinatorial rank of a graded braided bialgebra, J. Pure Appl. Algebra 215 (2011), 20432054.CrossRefGoogle Scholar
5.Ardizzoni, A., Menini, C. and Ştefan, D., Braided bialgebras of Hecke-type, J. Algebra 321 (3) (2009), 847865.CrossRefGoogle Scholar
6.Ardizzoni, A., Menini, C. and Ştefan, D., PBW deformations of braided symmetric algebras and a Milnor–Moore type theorem for braided bialgebras, preprint (arXiv:math.QA/0604181v2).Google Scholar
7.Ardizzoni, A. and Stumbo, F., Quadratic Lie algebras, Commun. Algebra, to appear.Google Scholar
8.Baez, J. C., Hochschild homology in a braided tensor category, Trans. Amer. Math. Soc. 334 (2) (1994), 885906.CrossRefGoogle Scholar
9.Berger, R., The quantum Poincaré–Birkhoff–Witt theorem. Commun. Math. Phys. 143 (2) (1992), 215234.CrossRefGoogle Scholar
10.Braverman, S. and Gaitsgory, D., Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type, J. Algebra 181 (2) (1996), 315328.CrossRefGoogle Scholar
11.Gomez, X. and Majid, S., Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras, J. Algebra 261 (2) (2003), 334388.CrossRefGoogle Scholar
12.Gurevich, D. I., Generalized translation operators on Lie groups. (Russian. English, Armenian summary) Izv. Akad. Nauk Armyan. SSR Ser. Mat. 18 (4) (1983), 305317.Google Scholar
13.Gurevich, D., Hecke symmetries and braided Lie algebras. in Spinors, twistors, Clifford algebras and quantum deformations (Sobótka Castle, 1992), 317–326, Fund. Theories Phys., Vol. 52 (Kluwer Academic Publishers, Dordrecht, 1993).Google Scholar
14.Helbig, M., A PBW basis criterion for pointed Hopf algebras, preprint (arXiv:1011.0140v1).Google Scholar
15.Humphreys, J. E., Introduction to Lie algebras and representation theory, in Graduate texts in mathematics, Vol. 9 (Springer-Verlag, New York–Berlin, 1972).Google Scholar
16.Jacobson, N., Lie algebras, in Interscience tracts in pure and applied mathematics, No. 10 (Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962).Google Scholar
17.Kharchenko, V. K., An algebra of skew primitive elements, Algebra Logic 37 (2) (1998), 101126.CrossRefGoogle Scholar
18.Kharchenko, V. K., A quantum analogue of the Poincaré–Birkhoff–Witt theorem. Algebra and Logic 38 (4) (1999), 259276.CrossRefGoogle Scholar
19.Kharchenko, V. K., Skew primitive elements in Hopf algebras and related identities, J. Algebra 238 (2) (2001), 534559.CrossRefGoogle Scholar
20.Kharchenko, V. K., Connected braided Hopf algebras, J. Algebra 307 (1) (2007), 2448.CrossRefGoogle Scholar
21.Lusztig, G., Canonical Bases Arising From Quantized Enveloping Algebras, J. Amer. Math. Soc. 3 (2) (1990), 447498.CrossRefGoogle Scholar
22.Majid, S., Quantum and braided-Lie algebras, J. Geom. Phys. 13 (4) (1994), 307356.CrossRefGoogle Scholar
23.Milnor, J. W. and Moore, J. C., On the structure of Hopf algebras, Ann. Math. 81 (2) (1965), 211264.CrossRefGoogle Scholar
24.Montgomery, S., Hopf Algebras and their actions on rings, CMBS Region. Conf. Ser. Math. 82 (1993).Google Scholar
25.Pareigis, B., On Lie algebras in the category of Yetter–Drinfeld modules, Appl. Categ. Struct. 6 (2) (1998), 151175.CrossRefGoogle Scholar
26.Ringel, C. M., PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 5188.Google Scholar
27.Rosso, M., An analogue of P.B.W. theorem and the universal RR-matrix for U hsl(N+1), Commun. Math. Phys. 124 (2) (1989), 307318.CrossRefGoogle Scholar
28.Sweedler, M., Hopf algebras (Benjamin, New York, 1969).Google Scholar
29.Takeuchi, M., Survey of braided Hopf algebras, in New trends in Hopf algebra theory (La Falda, 1999), pp. 301323; Contemp. Math., Vol. 267 (Amer. Math. Soc., Providence, RI, 2000).CrossRefGoogle Scholar
30.Ufer, S., PBW bases for a class of braided Hopf algebras, J. Algebra 280 (1) (2004), 84119.CrossRefGoogle Scholar
31.Wambst, M., Complexes de Koszul quantiques, Ann. Inst. Fourier 43 (4) (1993), 10891156.CrossRefGoogle Scholar
32.Woronowicz, S. L., Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1) (1989), 125170.CrossRefGoogle Scholar
33.Yamane, H., A Poincaré–Birkhoff–Witt theorem for the quantum group of type A N. Proc. Japan Acad. Ser. A Math. Sci. 64 (10) (1988) 385386.CrossRefGoogle Scholar