Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:24:43.462Z Has data issue: false hasContentIssue false

ON DEGENERATE SIGMA-FUNCTIONS IN GENUS 2

Published online by Cambridge University Press:  25 June 2018

JULIA BERNATSKA
Affiliation:
National University of Kyiv-Mohyla Academy, Kyiv 04655, Ukraine e-mails: bernatska.julia@ukma.edu.ua, jbernatska@gmail.com
DMITRY LEYKIN
Affiliation:
NASU Institute of Magnetism, Kyiv 03142, Ukraine e-mail: dmitry.leykin@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain explicit expressions for genus 2 degenerate sigma-function in terms of genus 1 sigma-function and elementary functions as solutions of a system of linear partial differential equations satisfied by the sigma-function. By way of application, we derive a solution for a class of generalized Jacobi inversion problems on elliptic curves, a family of Schrödinger-type operators on a line with common spectrum consisting of a point and two segments, explicit construction of a field of three-periodic meromorphic functions. Generators of rank 3 lattice in ℂ2 are given explicitly.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

1. Klein, F., Über hyperelliptische Sigmafunktionen. (Erster Aufsatz), Gesammelte mathematische Abhandlungen, Band 3 (Springer, Berlin, 1923), 323.Google Scholar
2. Weierstrass, K., Zur Theorie der elliptischen Funktionen, Mathematische Werke, Bd. 2 (Teubner, Berlin, 1894), 245255.Google Scholar
3. Baker, H. F., An introduction to the theory of multiply periodic functions, (Cambridge University Press, 1907), 360.Google Scholar
4. Buchstaber, V. M., Enolskii, V. Z., and Leykin, D. V., Hyperelliptic Kleinian functions and applications, In: Solitons, Geometry, and Topology: on the Crossroad, 179 (2), Amer. Math. Soc. Transl., Amer. Math. Soc., Providence, (1997), 134.Google Scholar
5. Nakayashiki, A., Sigma function as a tau function, IMRN, rnp135 (2009), 22.Google Scholar
6. Nakayashiki, A., On algebraic expressions of sigma functions for (n,s)-curves, Asian J. Math. 14 (2) (2010), 175212.Google Scholar
7. Korotkin, D. and Shramchenko, V., On higher genus Weierstrass sigma-function, Phys. D: Nonlinear Phenomena 241 (2012), 20832284.Google Scholar
8. Eilbeck, J. C., Eilers, K. and Enolski, V. Z., Periods of second kind differential of (n,s)-curves, Proc. Moscow Math. Soc. 74 (2013), 297315.Google Scholar
9. Buchstaber, V. M., Enolskii, V. Z. and Leykin, D. V., Rational analogs of Abelian functions, Funct. Anal. Appl. 33 (2) (1999), 8394.Google Scholar
10. Buchstaber, V. M. and Leykin, D. V., Polynomial lie algebras, Funct. Anal. Appl. 36 (4) (2002), 267280.Google Scholar
11. Buchstaber, V. M. and Leykin, D. V., Heat equations in a nonholonomic frame, Funct. Anal. Appl. 38 (2) (2004), 88101.Google Scholar
12. Buchstaber, V. M. and Leykin, D. V., Solution of the problem of differentiation of Abelian functions over parameters for families of (n, s)-curves, Funct. Anal. Appl. 42 (4) (2008), 268278.Google Scholar
13. Athorne, C., Identities for hyperelliptic -functions of genus one, two and three in covariant form, J. Phys. A: Math. Theor. 41 (2008), 415202.Google Scholar
14. Eilbeck, J. C., Enolski, V., Matsutani, S., Ônishi, Y. and Previato, E., Abelian functions for trigonal curves of genus three, IMRN, rnv140 (2007), 38.Google Scholar
15. Bateman, H. and Erdélyi, A., Higher transcendental functions, V. 2 (Higher transcendental functions, New York, McGraw-Hill, 1953), 426.Google Scholar
16. Braden, H. W. and Fedorov, Y. N., An extended Abel-Jacobi map, J. Geom. Phys 58 (2008), 13461354.Google Scholar
17. Clebsch, A. and Gordon, P., Theorie der abelschen functionen (Teubner, Leipzig, 1866).Google Scholar
18. Fay, J. D., Theta functions on Riemann surfaces, LNM 352 (1973), 144.Google Scholar
19. Fedorov, Y., Classical integrable systems and Billiards related to generalized Jacobians, Acta Appl. Math. 55 (1999), 251301.Google Scholar
20. Gaudin, M., La fonction d'onde de Bethe (Masson, Paris, 1983).Google Scholar
21. Givental, A. B., Displacement of invariants of groups that are generated by reflections and are connected with simple singularities of functions Funct. Anal. Appl. 14 (2) (1980), 8189.Google Scholar
22. Previato, E., Hyperelliptic Quasi-Periodic and soliton solutions of the nonlinear Schrödinger equation, Duke Math J., 52 (2) (1985), 329377.Google Scholar
23. Rosenlicht, M., Generalized Jacobian varieties, Ann. Math. 59 (1954), 505530.Google Scholar
24. Zakalyukin, V. M., Reconstructions of wave fronts depending on one parameter, Funct. Anal. Appl. 10 (2) (1976), 139140.Google Scholar