Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T16:07:50.237Z Has data issue: false hasContentIssue false

HOMOTOPY TYPES OF GAUGE GROUPS OVER NON-SIMPLYCONNECTED CLOSED 4-MANIFOLDS

Published online by Cambridge University Press:  20 June 2018

TSELEUNG SO*
Affiliation:
Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom e-mail: tls1g14@soton.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a simple, simply connected, compact Lie group, and let M be an orientable, smooth, connected, closed 4-manifold. In this paper, we calculate the homotopy type of the suspension of M and the homotopy types of the gauge groups of principal G-bundles over M when π1(M) is (1) ℤ*m, (2) ℤ/prℤ, or (3) ℤ*m*(*nj=1ℤ/prjjℤ), where p and the pj's are odd primes.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

1. Atiyah, M. and Bott, R., The Yang–Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 308(1505) (1983), 523615.Google Scholar
2. Cohen, F., Moore, J., and Neisendorfer, J., Torsion in homotopy goups, Ann. Math., Second Ser., 109 (1979), 121168.Google Scholar
3. Hamanaka, H. and Kono, A., Unstable K-group and homotopy type of certain gauge groups, Proc. R. Soc. Edinburgh Sect. A: Math. 136(2006), 149155.Google Scholar
4. Gottlieb, D., Applications of bundle map theory, Trans. Amer. Math. Soc. 171(1972), 2350.Google Scholar
5. Greenberg, M. and Harper, J., Algebraic topology: A first course (Benjamin/Cummings Publishing Company, Massachusetts, US, 1981).Google Scholar
6. Hatcher, A., Algebraic topology (Cambridge University Press, Cambridge, UK, 2002).Google Scholar
7. Matumoto, T. and Katanaga, A., On 4-dimensional closed manifolds with free fundamental groups, Hiroshima Math. J. 25(1995), 367370.Google Scholar
8. Kishimoto, D. and Kono, A., On the homotopy types of Sp(n) gauge groups, arXiv:1803.06477.Google Scholar
9. Kishimoto, D., Kono, A. and Tsutaya, M., On p-local homotopy types of gauge groups, Proc. R. Soc. Edinburgh Sect. A: Math. 144(2014), 149160.Google Scholar
10. Kishimoto, D., Theriault, S., and Tsutaya, M., The homotopy types of G 2-gauge groups, Topol. its Appl. 228 (2017), 92107.Google Scholar
11. Kono, A., A note on the homotopy type of certain gauge groups, Proc. R. Soc. Edinburgh Section A: Math. 117 (1991), 295297.Google Scholar
12. Kono, A. and Tsukuda, S., A remark on the homotopy type of certain gauge groups, J. Math. Kyoto Univ. 36 (1996), 115121.Google Scholar
13. Kreck, M., Lück, W., and Teichner, P., Stable prime decompositions of 4-manifolds, in Prospects in topology (Quinn, F., Editor), Annals of mathematics studies, 138 (Princeton University Press, Princeton, 1995), 251269.Google Scholar
14. Matsumoto, Y., An Introduction to Morse Theory, Translations of mathematical monographs, (American Mathematical Society, Rhode Island, US, 2002).Google Scholar
15. Neisendorfer, J., Algebraic methods in unstable homotopy theory (Cambridge University Press, Cambridge, UK, 2010).Google Scholar
16. Neisendorfer, J., Homotopy groups with coefficients, J. Fixed Point Theory Appl. 8 (2010), 247338.Google Scholar
17. Sutherland, W., Function spaces related to gauge groups, Proc. R. Soc. Edinburgh Section A: Math. 121 (1992), 185190.Google Scholar
18. Theriault, S., Odd primary homotopy decompositions of gauge groups, Algebraic Geom. Topol. 10 (2010), 535564.Google Scholar
19. Theriault, S., The homotopy types of Sp(2)-gauge groups, Kyoto J. Math. 50 (2010), 591605.Google Scholar
20. Theriault, S., Homotopy types of SU(3)-gauge groups, Publ. RIMS Kyoto Univ. 48 (2012), 543563.Google Scholar
21. Theriault, S., The homotopy types of SU(5)-gauge groups, Osaka J. Math. 52 (2015), 1531.Google Scholar
22. Theriault, S., Odd primary homotopy types of SU(n)-gauge groups, Algebraic Geom. Topol. 17 (2017), 11311150.Google Scholar