Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T20:35:06.668Z Has data issue: false hasContentIssue false

GENERALIZED FINITE POLYLOGARITHMS

Published online by Cambridge University Press:  19 February 2020

MARINA AVITABILE
Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano - Bicocca, via Cozzi 55, I-20125Milano, Italy, e-mail: marina.avitabile@unimib.it
SANDRO MATTAREI
Affiliation:
Charlotte Scott Centre for Algebra, University of Lincoln, Brayford Pool Lincoln, LN6 7TS, United Kingdom, e-mail: smattarei@lincoln.ac.uk

Abstract

We introduce a generalization ${\rm{\pounds}}_d^{(\alpha)}(X)$ of the finite polylogarithms ${\rm{\pounds}}_d^{(0)}(X) = {{\rm{\pounds}}_d}(X) = \sum\nolimits_{k = 1}^{p - 1} {X^k}/{k^d}$ , in characteristic p, which depends on a parameter α. The special case ${\rm{\pounds}}_1^{(\alpha)}(X)$ was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to ${\rm{\pounds}}_d^{(\alpha)}(X)$ in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials ${\rm{\pounds}}_d^{(\alpha)}(X)$ are related to the powers of ${\rm{\pounds}}_1^{(\alpha)}(X)$ and derive some consequences.

Type
Research Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avitabile, M. and Mattarei, S., Grading switching for modular non-associative algebras, Lie algebras and related topics, Contemp. Math., vol. 652, Amer. Math. Soc., Providence, RI, 2015, pp. 114. MR 3453046Google Scholar
Avitabile, M. and Mattarei, S., Laguerre polynomials of derivations, Israel J. Math. 205 (2015), no. 1, 109126. MR 3314584Google Scholar
Avitabile, M. and Mattarei, S., A generalized truncated logarithm, Aequationes Math. 93 (2019), no. 4, 711734. MR 3984323Google Scholar
Elbaz-Vincent, P. and Gangl, H., On poly(ana)logs. I, Compositio Math. 130 (2002), no. 2, 161210. MR 1883818 (2002m:11059)CrossRefGoogle Scholar
Kontsevich, M., The $1\frac{1}{2}$ -logarithm. Appendix to: “On poly(ana)logs. I” [Compositio Math 130 (2002), no. 2, 161–210; MR1883818 (2002m:11059)] by P. Elbaz-Vincent and H. Gangl, Compositio Math. 130 (2002), no. 2, 211214. MR 1884238 (2002m:11060)Google Scholar
Mattarei, S., Artin-Hasse exponentials of derivations, J. Algebra 294 (2005), no. 1, 118. MR 2171626Google Scholar
Mattarei, S., Exponential functions in prime characteristic, Aequationes Math. 71 (2006), no. 3, 311317. MR 2236408 (2007b:39056)Google Scholar
Mattarei, S. and Tauraso, R., Congruences for central binomial sums and finite polylogarithms, J. Number Theory 133 (2013), no. 1, 131157. MR 2981405Google Scholar
Mattarei, S. and Tauraso, R., From generating series to polynomial congruences , J. Number Theory 182 (2018), 179205. MR 3703936Google Scholar
Mirimanoff, D., L’équation indéterminée ${x^\ell } + {y^\ell } + {z^\ell } = 0$ et le critérium de Kummer, J. Reine Angew. Math. 128 (1905), 4568. MR 1580644Google Scholar
Ribenboim, P., 13 lectures on Fermat’s last theorem, Springer-Verlag, New York, 1979. MR 551363 (81f:10023)Google Scholar