Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-d8lm2 Total loading time: 0.148 Render date: 2021-06-24T13:52:48.615Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

DETECTING STEINER AND LINEAR ISOMETRIES OPERADS

Published online by Cambridge University Press:  19 May 2020

JONATHAN RUBIN
Affiliation:
University of California Los Angeles, Los Angeles, CA 90095, USA e-mail: jrubin@math.ucla.edu
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We study the indexing systems that correspond to equivariant Steiner and linear isometries operads. When G is a finite abelian group, we prove that a G-indexing system is realized by a Steiner operad if and only if it is generated by cyclic G-orbits. When G is a finite cyclic group, whose order is either a prime power or a product of two distinct primes greater than 3, we prove that a G-indexing system is realized by a linear isometries operad if and only if it satisfies Blumberg and Hill’s horn-filling condition. We also repackage the data in an indexing system as a certain kind of partial order. We call these posets transfer systems, and develop basic tools for computing with them.

MSC classification

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

References

Balchin, S., Barnes, D. and Roitzheim, C., N -operads and associahedra. Preprint arXiv:1905.03797.Google Scholar
Balchin, S., Bearup, D., Pech, C. and Roitzheim, C., Equivariant homotopy commutativity for G = Cpgr. Preprint arXiv:2001.05815.Google Scholar
Blumberg, A. J. and Hill, M. A., Operadic multiplications in equivariant spectra, norms, and transfers, Adv. Math. 285 (2015), 658708.CrossRefGoogle Scholar
Blumberg, A. J. and Hill, M. A., Incomplete Tambara functors, Algebr. Geom. Topol. 18(2) (2018), 723766.CrossRefGoogle Scholar
Bonventre, P. and Pereira, L. A., Genuine equivariant operads. Preprint arXiv:1707.02226.Google Scholar
Elmendorf, A. D., Kriz, I., Mandell, M. A. and May, J. P., Rings, modules, and algebras in stable homotopy theory. With an appendix by Cole, M.. Mathematical Surveys and Monographs, vol. 47 (American Mathematical Society, Providence, RI, 1997), xii+249. ISBN: 0-8218-0638-6Google Scholar
Guillou, B. J. and May, J. P., Equivariant iterated loop space theory and permutative G-categories, Algebr. Geom. Topol. 17(6) (2017), 32593339.Google Scholar
Gutiérrez, J. J. and White, D., Encoding equivariant commutativity via operads, Algebr. Geom. Topol. 18(5) (2018), 29192962.CrossRefGoogle Scholar
Hill, M. A. and Hopkins, M. J., Equivariant multiplicative closure, in Algebraic topology: applications and new directions (Tillmann, U., Galatius, S. and Sinha, D., Editors), Contemporary Mathematics, vol. 620 (American Mathematical Society, Providence, RI, 2014), 183–199. ISBN: 978-0-8218-9474-3CrossRefGoogle Scholar
Hill, M. A. and Hopkins, M. J., Equivariant symmetric monoidal structure. Preprint arXiv:1610.03114.Google Scholar
Hill, M. A., Hopkins, M. J. and Ravenel, D. C., On the nonexistence of elements of Kervaire invariant one, Ann. Math. (2) 184(1) (2016), 1262.Google Scholar
May, J. P., The geometry of iterated loop spaces. Lectures Notes in Mathematics, vol. 271 (Springer-Verlag, Berlin-New York, 1972), viii+175.CrossRefGoogle Scholar
May, J. P., Equivariant homotopy and cohomology theory. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou and S. Waner. CBMS Regional Conference Series in Mathematics, vol. 91. Published for the Conference Board of the Mathematical Sciences, Washington, DC (American Mathematical Society, Providence, RI, 1996), xiv+366. ISBN: 0-8218-0319-0CrossRefGoogle Scholar
Rubin, J., Combinatorial N operads. Preprint arXiv:1705.03585.Google Scholar
Rubin, J., Categorifying the algebra of indexing systems. Preprint arXiv:1909.11739.Google Scholar
White, D., Monoidal Bousfield localizations and algebras over operads. arXiv:1404.5197.Google Scholar
You have Access
Open access
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

DETECTING STEINER AND LINEAR ISOMETRIES OPERADS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

DETECTING STEINER AND LINEAR ISOMETRIES OPERADS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

DETECTING STEINER AND LINEAR ISOMETRIES OPERADS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *