Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T04:57:24.126Z Has data issue: false hasContentIssue false

U–Pb geochronology of zircons from fossiliferous sediments of the Hajnáčka I maar (Slovakia) – type locality of the MN 16a biostratigraphic subzone

Published online by Cambridge University Press:  28 March 2012

VRATISLAV HURAI*
Affiliation:
Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. Box 106, 84005 Bratislava, Slovakia
JEAN-LOUIS PAQUETTE
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, F-63000 Clermont-Ferrand, France CNRS, UMR6524, LMV, F-63038 Clermont-Ferrand, France IRD, R 163, LMV, Clermont-Ferrand, France
MONIKA HURAIOVÁ
Affiliation:
Department of Mineralogy and Petrology, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
MARTIN SABOL
Affiliation:
Department of Geology and Palaeontology, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
*
Author for correspondence: vratislav.hurai@savba.sk

Abstract

Lacustrine sediments of the Hajnáčka I maar of southern Slovakia contain teeth and skeletal remains of a mammal fauna, including index Early Villanyian arvicoline rodents. U–Pb dating of magmatic zircons extracted from the redeposited fossiliferous maar sediments revealed a total of six volcanic events. The oldest age of 3.43 Ma was interpreted as that corresponding to the initial phreato-magmatic eruption that created the maar. Most zircons grouped around 3.06 ± 0.03 Ma, the age attributed to the catastrophic eruption that killed the mammal assemblage thriving within and around the maar studied. This age coincides with the 3.1 Ma boundary between the MN 16a and 16b subzones of the European Mammal Neogene chronostratigraphic scale estimated from the succession of Early Villanyian palaeontological localities according to the hypsometry of rodent teeth. Younger zircon ages overlapped those of the neighbouring basaltic lava flows, necks and dykes, thus recording superimposed effusions. The youngest 1.58 Ma old zircon defines the age limit for the final redeposition of the fossiliferous sediments in the maar drainage lake regime.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agadzhanyan, A. K. 2003. Middle Pliocene small mammals of the Russian Plain. Stratigraphy and Geological Correlation 11, 620–35.Google Scholar
Aspen, P., Upton, B. G. J. & Dickin, A. P. 1990. Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts: high-pressure syenitic debris from upper mantle sources? European Journal of Mineralogy 2, 503–17.CrossRefGoogle Scholar
Balogh, K., Miháliková, A. & Vass, D. 1981. Radiometric dating of basalts in southern and Central Slovakia. Západné Karpaty Séria Geológia 7, 113–26.Google Scholar
Balogh, K., Vass, D. & Ravasz-Baranyai, L. 1994. K/Ar ages in the case of correlated K and excess Ar concentrations: a case study for the alkaline olivine basalt of Šomoška, Slovak-Hungarian boundary. Geologica Carpathica 45, 97102.Google Scholar
Bellatreccia, F., Della Ventura, G., Parodi, G. C. & Williams, T. C. 1998. Baddeleyite from the Vico volcanic complex, Latium, Italy. Rendiconti Lincei 9, 2733.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Aubry, M. P. & Hardebol, J. 1995. Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication no. 54, 386 pp.Google Scholar
Claoué-Long, J., Compston, W., Roberts, J. & Fanning, C. M. 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In Geochronology, Time Scales and Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M. P. & Hardenbol, J.), pp. 122. SEPM (Society for Sedimentary Geology) Special Publication no. 54.Google Scholar
Cocherie, A., Fanning, C. M., Jezequel, P. & Robert, M. 2009. LA-MC-ICPMS and SHRIMP U-Pb dating of complex zircons from Quaternary tephras from the French Massif Central: magma residence time and geochemical implications. Geochimica et Cosmochimica Acta 73, 1095–108.Google Scholar
Coenraads, R. R., Sutherland, F. L. & Kinny, P. D. 1990. The origin of sapphires: U-Pb dating of zircon inclusions sheds new light. Mineralogical Magazine 54, 113–22.Google Scholar
Dietrich, W. O. 1953. Neue Funde des etruskischen Nashorns in Deutschland und die Frage der Villafranchium-Faunen. Geologie 2, 417–30.Google Scholar
Elečko, M., Vass, D., Konečný, V., Gaálová, K. & Gaál, Ľ. 2001. Cerová vrchovina Upland: Geologic-Educational Map 1:50 000. Ministry of Environment of Slovak Republic, D. Štúr Institute of Geology.Google Scholar
Fejfar, O. 1961. Die plio-pleistozänen Wirbeltierfaunen von Hajnáčka und Ivanovce (Slowakei), ČSR. II. Microtidae und Cricetidae inc. sed. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 112, 4882.Google Scholar
Fejfar, O. 1964. The Lower Villafranchian vertebrates from Hajnáčka near Filákovo in Southern Slovakia. Rozpravy Ústředního Ústavu Geologického 30, 1116.Google Scholar
Fejfar, O. 2001. The Arvicolids from Arondelli-Triversa: a new look. Bollettino della Società Palaeontologica Italiana 40, 185–93.Google Scholar
Fejfar, O. & Heinrich, W. D. 1987. On the biostratigraphical division of Late Cainozoic in Europe on the basis of Murids and Crecetids (Rodentia, Mammalia). Časopis pro Mineralogii a Geologii 32, 116.Google Scholar
Fejfar, O., Heinrich, W. D. & Heintz, E. 1990. Neues aus dem Villafranchium von Hajnáčka bei Fiľakovo (Slowakei, ČSSR). Quartärpaläontologie 8, 4770.Google Scholar
Fejfar, O., Heinrich, W. D. & Lindsay, E. H. 1998. Updating the Neogene rodent biochronology in Europe. In The Dawn of the Quaternary. (eds T. Kolfschoten, Van & Gibbard, P. L.), pp. 533–54, Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen no. 60.Google Scholar
Fejfar, O. & Storch, G. 1990. Eine pliozäne (ober-ruscinische) Kleinsäugerfauna aus Gundersheim, Rheinhessen. 1. Nagetiere: Mammalia, Rodentia. Senckenbergiana Lethaea 71, 139–84.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 610 pp.CrossRefGoogle Scholar
Guo, J. F., Green, T. H. & O'Reilly, S. Y. 1992. Ba partitioning and the origin of anorthoclase megacrysts in basaltic rocks. Mineralogical Magazine 56, 101–7.CrossRefGoogle Scholar
Heaman, L. M. & LeCheminant, A. N. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology 110, 95126.CrossRefGoogle Scholar
Heller, F. 1936. Eine Forest Bed-Fauna aus der Schwäbischen Alb. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse 1936, 129.Google Scholar
Hinton, R. W. & Upton, B. G. J. 1991. The chemistry of zircons and coexisting phases from alkali basalt xenoliths and a syenite. Geochimica et Cosmochimica Acta 55, 3287–302.CrossRefGoogle Scholar
Hurai, V., Paquette, J.-L., Huraiová, M. & Konečný, P. 2010. U-Th-Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. Journal of Volcanology and Geothermal Research 198, 275–87.Google Scholar
Irving, A. J. & Frey, F. A. 1984. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta 48, 1201–21.CrossRefGoogle Scholar
Izokh, A. E., Fedoseev, G. S. & Kutolin, V. A. 2007. Late Cretaceous intracontinental alkali basaltic magmatism of the Chebaki-Balakhta Basin: The Tergesh Complex. In Magmatism and Metallogeny of the Altai and Adjacent Large Igneous Provinces with an Introductory Essay on the Altaids (eds Seltmann, R., Borisenko, A. & Fedoseev, G.), pp. 171–84. IAGOD Guidebook Series no. 16. London: CERCAMS/NHM.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Kantor, J. & Wiegerová, V. 1981. Radiometric ages of some basalts of Slovakia by 40Ar/K40 method. Geologický Zborník Geologica Carpathica 32, 2934.Google Scholar
Koch, A. 1904: Basaltlakkolith az ajnácsköi várhegyben. Földtani Közlony 34, 242–4.Google Scholar
Kováč, M., Baráth, I., Fordinál, K., Grigorovich, A. S., Halásová, E., Hudáčková, N., Joniak, P., Sabol, M., Slamková, M., Sliva, Ľ. & Vojtko, R. 2006. Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine–Carpathian–Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). Palaeogeography, Palaeoclimatology, Palaeoecology 238, 3252.CrossRefGoogle Scholar
Ludwig, K. R. 2001. User's manual for Isoplot/Ex Version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley, USA: Berkeley Geochronological Center, Special Publication 1a, 55 pp.Google Scholar
Mayhew, D. F., Dieleman, F. E., Boele, J., Verhaard, L. & van den Hoek Ostende, L. W. 2008. Mimomys hajnackensis from the Pliocene of the Netherlands. Netherlands Journal of Geosciences – Geologie en Mijnbouw 87, 181–8.CrossRefGoogle Scholar
Orlický, O. 2006. A realistic interpretation of magnetic and paleomagnetic data: a study of basalts from Southern Slovakia. Contributions to Geophysics and Geodesy 36, 201–27.Google Scholar
Orlický, O., Balogh, K., Konečný, V., Lexa, J., Tunyi, I. & Vass, D. 1996. Paleomagnetism and radiometric ages of basalts of Central and Southern Slovakia (Western Carpathians). Geologica Carpathica 47, 2130.Google Scholar
Papp, A. & Thenius, E. 1959. Handbuch der Stratigraphischen Geologie III, Tertiär. 2. Teil. Stuttgart: F. Enke, 328 pp.Google Scholar
Paquette, J. L. & Mergoil-Daniel, J. 2009. Origin and U-Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra (Massif Central, France). Contributions to Mineralogy and Petrology 158, 245–62.Google Scholar
Paquette, J. L. & Tiepolo, M. 2007. High resolution (5 μm) U-Th-Pb isotopes dating of monazite with excimer laser ablation (ELA)-ICPMS. Chemical Geology 240, 222–37.Google Scholar
Pécskay, Z., Lexa, J., Szakacs, A., Seghedi, I., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E., Panaiotu, C. & Cvetković, V. 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica 57, 511–30.Google Scholar
Pupin, J.-P. 2000. Granite genesis related to geodynamics from Hf-Y in zircon. Geological Society of America Special Papers 350, 245–56.Google Scholar
Sabol, M. 2003. New findings of Late Pliocene vertebrates from Hajnácka I site (southern Slovakia). Coloquios de Paleontologia 1, 595602.Google Scholar
Sabol, M. 2004. Rodents. In: Early Villanyian Site of Hajnáčka I (Southern Slovakia), Paleontological Research 1996–2000 (ed. Sabol, M.), pp. 5374. Rimavská Sobota: Gemer-Malohont Museum.Google Scholar
Sabol, M., Konečný, V., Vass, D., Kováčová, M., Ďurišová, A. & Túnyi, I. 2006. Early Late Pliocene site of Hajnáčka I (Southern Slovakia) – geology, palaeovolcanic evolution, fossil assemblages and palaeoenvironment. Courier Forschungsinstitut Senckenberg 256, 261–74.Google Scholar
Schafarzik, F. 1899. Daten zur Geologie der Knochenfundstätte von Ajnácskö. Földtani Közlony 29, 363–6 (in Hungarian).Google Scholar
Schärer, U. 1984. The effect of initial Th-230 disequilibrium on young U-Pb ages – The Makalu Case, Himalaya. Earth Planetary and Science Letters 67, 191204.Google Scholar
Siebel, W., Schmitt, A. K., Danišík, M., Chen, F., Meier, S., Weiss, S. & Eroglu, S. 2009. Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nature Geoscience 2, 886–90.Google Scholar
Sutherland, F. L. & Fanning, M. C. 2001. Gem-bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K-Ar ages and zircon fission track and U-Pb isotope dating. Australian Journal of Earth Sciences 48, 221–37.Google Scholar
Tera, F. & Wasserburg, G. 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planetary and Science Letters 14, 281304.Google Scholar
Tesakov, A. S. 2004. Biostratigraphy of Middle Pliocene – Eopleistocene of Eastern Europe (based on small mammals). Moscow: Nauka, 248 pp. (in Russian).Google Scholar
Thomas, R. & Webster, J. D. 1999. Characteristics of berlinite from the Ehrenfriedersdorf pegmatite, Erzgebirge, Germany. Zeitschrift für geologische Wissenschaften 27, 443–54.Google Scholar
Thomas, R., Webster, J. D. & Rhede, D. 1999. Strong phosphorus enrichment in a pegmatite-forming melt. Acta Universitatis Carolinae – Geologica 42, 150–64.Google Scholar
Tiepolo, M. 2003. In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry. Chemical Geology 141, 119.Google Scholar
Uher, P., Sabol, M., Konečný, P., Gregáňová, M., Táborský, Z. & Puškelová, Ľ. 1999. Sapphire from Hajnáčka (Cerová Highlands, southern Slovakia). Slovak Geological Magazine 5, 273–80.Google Scholar
Upton, B. G. J., Finch, A. & Slaby, E. 2009. Megacrysts and salic xenoliths in Scottish alkali basalts: derivatives of deep crustal intrusions and small-melt fractions from the upper mantle. Mineralogical Magazine 73, 943–56.CrossRefGoogle Scholar
Vangengeim, E. A., Pevzner, M. A. & Tesakov, A. S. 2005. Ruscinian and Lower Villafranchian: age of boundaries and position in magnetochronological scale. Stratigraphy and Geological Correlations 13, 530–46.Google Scholar
Vass, D., Elečko, M. & Konečný, V. 2007. Geology of Lučenská kotlina Depression and Cerová vrchovina Upland. Bratislava: Štátny Geologický ústav D. Štúra, 284 pp.Google Scholar
Vass, D., Konečný, V., Túnyi, I., Dolinský, P., Balogh, K., Hudáčková, N., Kováčová-Slamková, M. & Beláček, B. 2000. Origin of the Pliocene vertebrate bone accumulation at Hajnáčka, Southern Slovakia. Geologica Carpathica 51, 6982.Google Scholar
Vass, D. & Kraus, I. 1985. Two basalts of different age in Southern Slovakia and their relation to the Poltár Formation. Mineralia Slovaca 17, 435–40 (in Slovak with English summary).Google Scholar
Visonà, D., Caironi, V., Carraro, A., Dallai, L., Fioretti, A. M. & Fanning, M. 2007. Zircon megacrysts from basalts of the Venetian Volcanic Province (NE Italy): U-Pb ages, oxygen isotopes and REE data. Lithos 94, 168–80.Google Scholar
Yu, Y., Xu, X. & Chen, X. 2010. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China. Mineralogy and Petrology 100, 7594.CrossRefGoogle Scholar
Supplementary material: File

Hurai supplementary material

Appendix

Download Hurai supplementary material(File)
File 397.3 KB