Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T07:52:14.010Z Has data issue: false hasContentIssue false

Stable isotope composition of hypogenic speleothem calcite in Kalana (Estonia) as a record of microbial methanotrophy and fluid evolution

Published online by Cambridge University Press:  11 December 2015

JAAN EENSAAR
Affiliation:
Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
TÕNU PANI
Affiliation:
Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
MIKK GAŠKOV
Affiliation:
Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
HOLAR SEPP
Affiliation:
Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
KALLE KIRSIMÄE*
Affiliation:
Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
*
Author for correspondence: kalle.kirsimae@ut.ee

Abstract

Aeronian (Silurian Period) carbonate rocks in Kalana quarry in central Estonia contain cave and fracture structures filled with calcitic speleothem precipitates of atypical composition. Calcite crystals in dolomitized limestone cave walls have diverse shapes (equant-blocky, bladed and fibrous), but most of the cave walls and speleothems are covered with an up to 10 cm thick crust of microcrystalline botryoidal calcite. The morphology of precipitates suggests their formation in low hydrodynamic conditions in water supersaturated with calcite. Calcite in speleothems is associated with the mineralization of sulphur-bearing minerals, such as pyrite and abundant barite. Unlike that of speleothem calcite, the stable isotope composition of authigenic calcite shows extreme depletion in 13C and large variations in δ13CPDB from –11 to –56‰, whereas the δ18OPDB values range from –5 to –12‰, suggesting calcite precipitation from a 13C-depleted carbon source supplied by microbially mediated anaerobic oxidation of methane and/or other hydrocarbons at elevated temperatures (up to 70°C). Systematic variation in the δ13CPDB and δ18OPDB values of layered precipitates indicates a change from an initially biogenic methane source to an either thermogenic methane or hydrocarbon source in the low-temperature hydrothermal fluid. Calcite speleothems in Kalana possibly developed at the mixing front of sulphate-rich seawater or groundwater and low-temperature methane-bearing hydrothermal fluids in the phreatic zone of a hypogenic-hydrothermal (karst) system.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloisi, G., Pierre, C., Rouchy, J. M., Foucher, J. P., Woodside, J. & Party, M. S. 2000. Methane–related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth and Planetary Science Letters 184, 321–38.Google Scholar
Aloisi, G., Wallmann, K., Bollwerk, S. M., Derkachev, A., Bohrmann, G. & Suess, E. 2004. The effect of dissolved barium on biogeochemical processes at cold seeps. Geochimica et Cosmochimica Acta 68, 1735–48.Google Scholar
Banner, J. L. & Hanson, G. N. 1990. Calculation of simultaneous isotopic and trace-element variations during water–rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta 54, 3123–37.Google Scholar
Bauert, H. 1989. Discontinuity surfaces of possible microkarst origin in the Viivikonna Formation (Kukruse Stage, Middle Ordovician) of Estonia. Proceedings of the Academy of Sciences of the Estonian SSR, Geology 38, 7782.CrossRefGoogle Scholar
Beal, E. J., House, C. H. & Orphan, V. J. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–7.CrossRefGoogle ScholarPubMed
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U. & Pfannkuche, O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–6.Google Scholar
Bottrell, S. H., Crowley, S. & Self, C. 2001. Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization. Geofluids 1, 103–21.Google Scholar
Breecker, D. O., Payne, A. E., Quade, J., Banner, J. L., Ball, C. E., Meyer, K. W. & Cowan, B. D. 2012. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation. Geochimica et Cosmochimica Acta 96, 230–46.Google Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 362407.Google Scholar
Canet, C., Prol–Ledesma, R. M., Melgarejo, J. C. & Reyes, A. 2003. Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially derived carbonates? Marine Geology 199, 245–61.Google Scholar
Castellini, D. G., Dickens, G. R., Snyder, G. T. & Ruppel, C. D. 2006. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology 226, 130.Google Scholar
Cerling, T. E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229–40.Google Scholar
Drake, H., Astrom, M. E., Heim, C., Broman, C., Astrom, J., Whitehouse, M., Ivarsson, M., Siljestrom, S. & Sjovall, P. 2015. Extreme C-13 depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nature Communications 6, article no. 7020, doi: 10.1038/ncomms8020.Google Scholar
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas–Schoonen, K. T., den Camp, H. J. M. O., Janssen–Megens, E. M., Francoijs, K. J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M. & Strous, M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543548.Google Scholar
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spotl, C., Mattey, D., McDermott, F. & Eimp 2006. Modification and preservation of environmental signals in speleothems. Earth–Science Reviews 75, 105–53.CrossRefGoogle Scholar
Feng, D., Birgel, D., Peckmann, J., Roberts, H. H., Joye, S. B., Sassen, R., Liu, X. L., Hinrichs, K. U. & Chen, D. F. 2014. Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory. Chemical Geology 385, 129–39.CrossRefGoogle Scholar
Feng, W. M., Banner, J. L., Guilfoyle, A. L., Musgrove, M. & James, E. W. 2012. Oxygen isotopic fractionation between drip water and speleothem calcite: A 10-year monitoring study, central Texas, USA. Chemical Geology 304, 5367.Google Scholar
Frisia, S., Borsato, A., Fairchild, I. J. & McDermott, F. 2000. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research 70, 1183–96.Google Scholar
Frisia, S., Fairchild, I. J., Fohlmeister, J., Miorandi, R., Spotl, C. & Borsato, A. 2011. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochimica et Cosmochimica Acta 75, 380400.Google Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons–Branchu, E. & Hamelin, B. 2001. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for C–13 variations in speleothems. Geochimica et Cosmochimica Acta 65, 3443–57.Google Scholar
Genty, D., Massault, M., Gilmour, M., Baker, A., Verheyden, S. & Kepens, E. 1999. Calculation of past dead carbon proportion and variability by the comparison of AMS(14)C and TIMS U/Th ages on two holocene stalagmites. Radiocarbon 41, 251–70.CrossRefGoogle Scholar
Griffith, E. M. & Paytan, A. 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–35.Google Scholar
Hanor, J. S. 2000. Barite–celestine geochemistry and environments of formation. In Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance (eds Alpers, C. N., Jambor, J. L. & Nordstrom, K. D.), pp. 193275. Mineralogical Society of America and Geochemical Society, Washington, DC, Reviews in Mineralogy and Geochemistry no. 40.Google Scholar
Hein, J. R., O’Neil, J. R. & Jones, M. G. 1979. Origin of authigenic carbonates in sediment from the deep Bering Sea. Sedimentology 26, 681705.Google Scholar
Hendriks, B. W. H., Donelick, R. A., O’Sullivan, P. B. & Redfield, T. F. 2007. Evidence for natural, non-thermal annealing of fission tracks in apatite. Geochimica et Cosmochimica Acta 71, A395.Google Scholar
Himmler, T., Freiwald, A., Stollhofen, H. & Peckmann, J. 2008. Late Carboniferous hydrocarbon–seep carbonates from the glaciomarine Dwyka Group, southern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 185–97.Google Scholar
Jaagus, J., Briede, A., Rimkus, E. & Remm, K. 2014. Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951–2010. Theoretical and Applied Climatology 118, 5768.CrossRefGoogle Scholar
Jacobsen, S. B. & Kaufman, A. J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology 161, 3757.Google Scholar
Joye, S. B., Boetius, A., Orcutt, B. N., Montoya, J. P., Schulz, H. N., Erickson, M. J. & Lugo, S. K. 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology 205, 219–38.Google Scholar
Joye, S. B., Bowles, M. W., Samarkin, V. A., Hunter, K. S. & Niemann, H. 2010. Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep-Sea Research Part II–Topical Studies in Oceanography 57, 19902001.Google Scholar
Kaljo, D. & Martma, T. 2000. Carbon isotopic composition of Llandovery rocks (East Baltic Silurian) with environmental interpretation. Proceedings of the Estonian Academy of Sciences, Geology 49, 267–83.Google Scholar
Kiipli, T., Kallaste, T. & Nestor, V. 2010. Composition and correlation of volcanic ash beds of Silurian age from the eastern Baltic. Geological Magazine 147, 895909.Google Scholar
Kink, H. 1997. Karst and springs. In Geology and Mineral Resources of Estonia (eds Raukas, A. & Teedumäe, A.), pp. 389–90. Tallinn: Estonian Academy Publishers.Google Scholar
Kirsimäe, K. & Jørgensen, P. 2000. Mineralogical and Rb–Sr isotope studies of low-temperature diagenesis of Lower Cambrian clays of the Baltic paleobasin of North Estonia. Clays and Clay Minerals 48, 95105.Google Scholar
Kirsimäe, K., Jørgensen, P. & Kalm, V. 1999. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals 34, 151–63.Google Scholar
Klimchouk, A. 2009. Morphogenesis of hypogenic caves. Geomorphology 106, 100–17.Google Scholar
Lachniet, M. S. 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412–32.Google Scholar
Marlow, J., Peckmann, J. & Orphan, V. 2015. Autoendoliths: a distinct type of rock-hosted microbial life. Geobiology 13, 303–7.Google Scholar
McDermott, F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, 901–18.Google Scholar
Milucka, J., Ferdelman, T. G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F. & Kuypers, M. M. M. 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–6.Google Scholar
Natalicchio, M., Birgel, D., Dela Pierre, F., Martire, L., Clari, P., Spotl, C. & Peckmann, J. 2012. Polyphasic carbonate precipitation in the shallow subsurface: Insights from microbially-formed authigenic carbonate beds in upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 329, 158–72.Google Scholar
Natalicchio, M., Dela Pierre, F., Clari, P., Birgel, D., Cavagna, S., Martire, L. & Peckmann, J. 2013. Hydrocarbon seepage during the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 390, 6880.CrossRefGoogle Scholar
O’Neil, J. R., Clayton, R. N. & Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics 51, 5547–58.Google Scholar
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America 99, 7663–8.Google Scholar
Palmer, A. N. 2011. Distinction between epigenic and hypogenic maze caves. Geomorphology 134, 922.Google Scholar
Paull, C. K., Chanton, J. P., Neumann, A. C., Coston, J. A., Martens, C. S. & Showers, W. 1992. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits; examples from the Florida Escarpment. Palaios 7, 361–75.Google Scholar
Peckmann, J. & Thiel, V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology 205, 443–67.Google Scholar
Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L. & Reitner, J. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. International Journal of Earth Sciences 88, 6075.Google Scholar
Pedersen, K. 2013. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H–2. ISME Journal 7, 839–49.Google Scholar
Plado, J., Preeden, U., Puura, V., Pesonen, L. J., Kirsimäe, K., Pani, T. & Elbra, T. 2008. Palaeomagnetic age of remagnetizations in Silurian dolomites, Rostla quarry (Central Estonia). Geological Quarterly 52, 213–24.Google Scholar
Preeden, U., Plado, J., Mertanen, S. & Puura, V. 2008. Multiply remagnetized Silurian carbonate sequence in Estonia. Estonian Journal of Earth Sciences 57, 170–80.CrossRefGoogle Scholar
Punning, J. M., Toots, M. & Vaikmae, R. 1987. O-18 in Estonian natural waters. Isotopenpraxis 23, 232–4.Google Scholar
Raidla, V., Kirsimae, K., Ivask, J., Kaup, E., Knoller, K., Marandi, A., Martma, T. & Vaikmae, R. 2014. Sulphur isotope composition of dissolved sulphate in the Cambrian–Vendian aquifer system in the northern part of the Baltic Artesian Basin. Chemical Geology 383, 147–54.Google Scholar
Roberts, H. H., Feng, D. & Joye, S. B. 2010. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Research Part II–Topical Studies in Oceanography 57, 2040–54.CrossRefGoogle Scholar
Romanek, C. S., Grossman, E. L. & Morse, J. W. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite – effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419–30.Google Scholar
Sapart, C. J., Monteil, G., Prokopiou, M., van de Wal, R. S. W., Kaplan, J. O., Sperlich, P., Krumhardt, K. M., van der Veen, C., Houweling, S., Krol, M. C., Blunier, T., Sowers, T., Martinerie, P., Witrant, E., Dahl–Jensen, D. & Rockmann, T. 2012. Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490, 8588.Google Scholar
Schoell, M. 1988. Multiple origins of methane in the Earth. Chemical Geology 71, 110.CrossRefGoogle Scholar
Somelar, P., Kirsimäe, K., Hints, R. & Kirs, J. 2010. Illitization of Early Paleozoic K-bentonites in the Baltic Basin: decoupling of burial- and fluid-driven processes. Clays and Clay Minerals 58, 388–98.Google Scholar
Somelar, P., Kirsimäe, K. & Srodon, J. 2009. Mixed-layer illite-smectite in the Kinnekulle K-bentonite, northern Baltic Basin. Clay Minerals 44, 455–68.Google Scholar
Spötl, C., Dublyansky, Y., Meyer, M. & Mangini, A. 2009. Identifying low-temperature hydrothermal karst and palaeowaters using stable isotopes: a case study from an alpine cave, Entrische Kirche, Austria. International Journal of Earth Sciences 98, 665–76.Google Scholar
Talyzina, N. M. 1998. Fluorescence intensity in Early Cambrian acritarchs from Estonia. Review of Palaeobotany and Palynology 100, 99108.Google Scholar
Taylor, J. C. 1991. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction 6, 29.Google Scholar
Tinn, O., Meidla, T., Ainsaar, L. & Pani, T. 2009. Thallophytic algal flora from a new Silurian Lagerstätte. Estonian Journal of Earth Sciences 58, 3842.Google Scholar
Tissot, B. P. & Welte, D. H. 1984. Petroleum Formation and Occurrence. New York: Springer-Verlag, 699 pp.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.Google Scholar
Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O. G., Carden, G. A. F., Jasper, T., Korte, C., Strauss, H., Azmy, K. & Ala, D. 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 159172.Google Scholar
Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161, 291314.Google Scholar
Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J. W., Brunner, B., Kuypers, M. M. M., Hinrichs, K. U. & Elvert, M. 2014. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nature Geoscience 7, 190194.Google Scholar