Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T10:13:59.118Z Has data issue: false hasContentIssue false

The record and stratigraphie implications of organic-walled microfossils from the Ediacaran (terminal Proterozoic) of South Australia

Published online by Cambridge University Press:  01 May 2009

Richard J. F. Jenkins
Affiliation:
Department of Geology and Geophysics, University of Adelaide, Adelaide, SA 5001, Australia
David M. McKirdy
Affiliation:
Department of Geology and Geophysics, University of Adelaide, Adelaide, SA 5001, Australia
Clinton B. Foster
Affiliation:
Western Mining Corporation Limited, Petroleum Division, West Perth, WA 6005, Australia
Teresa O'Leary
Affiliation:
Western Mining Corporation Limited, Petroleum Division, West Perth, WA 6005, Australia
Stephen D. Pell
Affiliation:
Department of Geology and Geophysics, University of Adelaide, Adelaide, SA 5001, Australia

Abstract

Two assemblages of organic-walled microfossils have been recognized in drillcore samples from the late Proterozoic Rodda Beds in theeastern Officer Basin, South Australia. The fossils include tube-like remains and large, simple and sculptured acritarchs. Lithostratigraphic studies and seismic information, in conjunction with previous (albeit limited) acritarch finds, allow local correlation of the Rodda Beds with Ediacaran or terminal Proterozoic sequences in the northern Adelaide Fold Belt (site of the nominated Ediacaran stratotype). The new palynofloras are comparable withacritarch assemblages in the Amadeus Basin of central Australia, and suggest tentative correlations with sequences in China and the U.S.S.R. The presence of isotopically heavy marine carbonate in the lower fossiliferous horizons of the Rodda Beds (σ13CPDB = +3 to +6%0) is consistent with isotopic data from the equivalent interval in China. In contrast, the upper fossiliferous strata occur higher in the Rodda Beds where carbonate is significantly lighter (σ13CPDB = -1 to + 3%0).

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoco Australia Petroleum Company 1987. Technical evaluation of PEL 29, east Officer Basin, Australia [Appendix C: Biostratigraphic analyses]. South Australian Department of Mines and Energy, Open File Envelope no. 6843 (unpublished).Google Scholar
Awramik, S. M., Mcmenamin, D. S., Yin Chongyu, Zhao Ziqiang, Ding Qixiu & Zhang Shusen. 1985. Pro-karyotic and eukaryotic microfossils from a Protero-zoic/Phanerozoic transition in China. Nature 315, 655–8.CrossRefGoogle Scholar
Brasier, M. D., Margaritz, M., Corfield, R., Luo, Huilin, Wu, Xlche, Ouyang, Lln, Jlang, Zhiwen, Hamdi, B., He, Tingui & Fraser, A. G. 1990. The carbon- and oxygen-isotope record of the Pre-cambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.CrossRefGoogle Scholar
Brewer, A. M., Dunster, J. N., Gatehouse, C. G., Henry, R. L. & Weste, G. 1987. A revision of the stratigraphy of the eastern Officer Basin. Quarterly Geological Notes of the Geological Survey of South Australia, no. 102, pp. 115.Google Scholar
Christie-Blick, N., Grotzinger, J. P. & Von Der Borch, C. C. 1988. Sequencestratigraphy in Proterozoic successions. Geology 16, 100–4.2.3.CO;2>CrossRefGoogle Scholar
Christie-Blick, N., Von Der Borch, C. C. & Dibona, P. A. 1990. Working hypotheses for the origin of the Wonoka Canyons (Neoproterozoic), South Australia. American Journal of Science 290-A, 295332.Google Scholar
Coats, R. P. & Blissett, A. H. 1971. Regional and Economic Geology of the Mount Painter Province. Geological Survey of South Australia Bulletin no. 43.Google Scholar
Damassa, S. P. & Knoll, A. H. 1986. Micropalaeontology of the Late Proterozoic Arcoona Quartzite Member of the Tent Hill Formation, Stuart Shelf, South Australia. Alcheringa 10, 417–30.CrossRefGoogle Scholar
Dibona, P.A. 1991. A previously unrecognised Late Proterozoic succession: Upper Wilpena Group, northern Flinders Ranges, South Australia. Quarterly Geological Notes of the Geological Survey of South Australia, no. 117, pp. 29.Google Scholar
Dibona, P. A., Von Der Borch, C. C. & Christie-Blick, N. 1990. Sequence stratigraphy and evolution of a basin-slope succession: the Late Proterozoic Wonoka Formation, Flinders Ranges, South Australia. Australian Journal of Earth Sciences 37, 135–45.CrossRefGoogle Scholar
Downie, C. 1982. Lower Cambrian acritarchs from Scotland, Norway, Greenlandand Canada. Transactions of the Royal Society of Edinburgh, Earth Sciences 72, 257–82.CrossRefGoogle Scholar
Field, B. 1991. Paralic and periglacial facies and contemporaneous deformation of the Late Proterozoic Olympic Formation, Pioneer Sandstone and Gaylad Sandstone, Amadeus Basin, cental Australia. Bureau of Mineral Resources, Australia, Bulletin 236, 127–36.Google Scholar
Freeman, M., Oakes, R. Q. & Shaw, R. D. 1991. Stratigraphy of the Late Proterozoic Gaylad Sandstone and recognition of an underlying regional unconformity. Bureau of Mineral Resources, Australia, Bulletin 236, 137–54.Google Scholar
Germs, G. J. B., Knoll, A. H. & Vidal, G. 1986. Latest Proterozoic microfossils from the Nama Group, Namibia (South West Africa). Precambrian Research 32, 4562.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. Cambridge: Cambridge University Press, 244 pp.Google Scholar
Hall, J. 1847 Palaeontology of New York, vol. 1. Albany, N. Y.: Stateof New York, 338 pp.Google Scholar
Hofmann, H. J. 1987. Precambrian biostratigraphy. Geo-science Canada 14, 135–54.Google Scholar
Jankauskas, T. & Posti, E. 1976. New Cambrian acritarch species from the east Baltic area. Eesti NSV Teaduste Akadeemia Toimetised, Keemia Geologia 25, 145–51 (see Mocyzdlowska, 1991).CrossRefGoogle Scholar
Jenkins, R. J. F. 1981. The concept of an ‘Ediacaran Period’ and its stratigraphic significance in Australia. Transactions of the Royal Society of South Australia 105, 179–94.Google Scholar
Jenkins, R. J. F. 1984. Ediacaran events: boundary relationships and correlation of key sections, especially in ‘Armorica’. GeologicalMagazine 121, 635–43.Google Scholar
Jenkins, R. J. F., FORD, C. H. & GEHLING, J. G. 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30, 101–19.CrossRefGoogle Scholar
Jenkins, R. J. F., Haines, P. W. & Gostin, V. A. 1988. The Ediacaran revisited. Geological Society of Australia Abstracts 21, 203–4.Google Scholar
Kaufman, A. J., Hayes, J. M., Knoll, A. H. & Germs, G. J. B. 1991. Isotopiccompositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis andmetamorphism. Precambrian Research 49, 301–27.CrossRefGoogle Scholar
Kirschvink, J. L., Magaritz, M., Ripperdan, R. L., Zhuravlev, A. Yu. & Rozanov, A. Yu. 1991. The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1, 6971, 87, 89.Google Scholar
Knoll, A. H. & Butterfield, N. J. 1989. New window on Proterozoic life. Nature 337, 602–3.CrossRefGoogle ScholarPubMed
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–8.CrossRefGoogle ScholarPubMed
Knoll, A. H. & Ohta, Y. 1988. Microfossils in meta-sediments from Prins Karls Forland, western Svalbard. Polar Research 6, 5967.CrossRefGoogle Scholar
Knoll, A. H. & Swett, K. 1987. Micropalaeontology across the Precambrian-Cambrian boundary in Spitsbergen. Journal of Paleontology 61, 898926.CrossRefGoogle Scholar
Khomentovsky, V. V. 1986. The Vendian System of Siberia and a standard stratigraphic scale. Geological Magazine 123, 333–48.CrossRefGoogle Scholar
Krieg, G. W. 1973. Everard, South Australia. Explanatory Notes 1: 250000 Geological Series, Sheet SG/53–13. Adelaide: Geological Survey of South Australia.Google Scholar
Lambert, I. B., Walter, M. R., Zang, Wenlong, Lu, Songnian & Ma, Guogan. 1987. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature 325, 140–2.CrossRefGoogle Scholar
Magaritz, M., Holser, W. T. & Kirschvink, J. L. 1986. Carbon-isotope eventsacross the Precambrian/Cambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Moczydlowska, M. 1991. Acritarch Biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian Boundary in Southeastern Poland. Fossils and Strata no. 29, 127 pp.CrossRefGoogle Scholar
Moczydlowska, M. & Vidal, G. 1988. How old is the Tommotian? Geology 16, 166–8.2.3.CO;2>CrossRefGoogle Scholar
O'Shea, K. J., Miles, M. C, Fritz, P., Frape, S. K. & LAWSON, D. E. 1988. Oxygen-18 and carbon-13 in the carbonates of the Salina Formation of southwestern Ontario. Canadian Journal of Earth Sciences, 25 182–94.CrossRefGoogle Scholar
Phipps, D. & Playford, G. 1984. Laboratory techniques for extraction of palynomorphs from sediments. Department of Geology, University of Queensland, Papers 11, 123.Google Scholar
Preiss, W. V. (compiler) 1987 a. The Adelaide Geosyncline: Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics. Geological Survey of South Australia Bulletin no. 53, 443 pp.Google Scholar
Preiss, W. V. 1987 b. Precambrian palaeontology of the Adelaide Geosyncline. In The Adelaide Geosyncline: Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics (compiler Preiss, W. V.), pp. 283313. Geological Survey of South Australia Bulletin no 53.Google Scholar
Preiss, W. V. & Forbes, B. G. 1981. Stratigraphy, correlation and sedimentary history of Adelaidean (late Proterozoic) basins in Australia. Precambrian Research 15, 255304.CrossRefGoogle Scholar
Preiss, W. V, Walter, M. R., COATS, R. P. & Wells, A. T. 1978. Lithologicalcorrelations of Adelaidean glacigenic rocks in parts of the Amadeus, Ngaliaand Georgina Basins. BMR Journal of Australian Geology and Geophysics 3, 4353.Google Scholar
Pyatiletov, V. G. & Rudavskaya, V. A. 1985. Acritarchs from the Yudomian Complex. In Vendian System, vol. 1 (eds Sokolov, B. S. and Ivanosky, A. B.), pp. 151–8. Moscow: Nauka (in Russian).Google Scholar
Richter, R. 1937. Marken und Spuren aus allen Zeiten, 1–11. Senckenbergiana 19, 150–69.Google Scholar
Sun, Weiguo, 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Para-charnia gen. nov. Precambrian Research 31, 361–75.Google Scholar
Sun, Weiguo, 1989. Subdivisions and correlations of the upper Precambrian inChina and Australia. Palaeontologia Cathayana 4, 122.Google Scholar
Sun, Weiguo, Wang, Guixiang & Zhou, Benhe, 1986. Macroscopic worm-like body fossils from the Upper Precambrian (900–700 Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance. Precambrian Research 31, 377403.Google Scholar
Thomas, B. 1990. Summary of seismic interpretation in the eastern Officer Basin. South Australian Department of Mines and Energy Report Book 90/58 (unpublished).Google Scholar
Vidal, G., 1990. Giant acanthomorph acritarchs from the Upper Proterozoic in southern Norway. Palaeontology 33, 287–98.Google Scholar
Vidal, G. & Knoll, A. H. 1983. Proterozoic plankton. Geological Society of America Memoir 161, 265–77.CrossRefGoogle Scholar
Velikanov, V. A. (ed.) 1990. The Vendian of Podolia, Excursion Guide: 3rd International Symposium on Cambrian System. Kiev: Academy of Sciencesof the Ukrainian SSR, 129 pp.Google Scholar
Velikanov, V. A., Assejeva, E. A. & Fedonkin, M. A. 1983. The Vendian ofthe Ukraine. Kiev: Naukova Dumka, 162 pp. (in Russian).Google Scholar
Von Der Borch, C. C., Christie-Blick, N. & Grady, A. E. 1988. Depositional sequence analysis applied to Late Proterozoic Wilpena Group, Adelaide Geosyncline, South Australia. Australian Journal of Earth Sciences 35, 5972.CrossRefGoogle Scholar
Wallace, M. W., Gostin, V. A. & Keays, R. R. 1989. Discovery of the Acramanimpact ejecta blanket in the Officer Basin and its stratigraphic significance. Australian Journal of Earth Sciences 36, 585–7.CrossRefGoogle Scholar
Walter, M. R. 1980. Adelaidean and Early Cambrian Stratigraphy of the Southwestern Georgina Basin: Correlation Chart and Explanatory Notes. Bureau of Mineral Resources, Geology and Geophysics, Australia, Report no. 214, 21 pp.Google Scholar
Walter, M. R., Elphinstone, R. & Heys, G. R. 1989. Proterozoic and Early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa 13, 209–56.CrossRefGoogle Scholar
Walter, M. R., Shergold, J. H., Muir, M. D. & Kruse, P. D. 1979. Early Cambrian and latest Proterozoic stratigraphy, Desert Syncline, southern Georgina Basin. Journal of the Geological Society of Australia 26, 305–12.CrossRefGoogle Scholar
Wang, Hongzen & Qiao, Xiufu. 1984. Proterozoic stratigraphy and tectonic framework of China. Geological Magazine 121, 599614.Google Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia 3, 79109.CrossRefGoogle Scholar
Yin, Leiming. 1985. Microfossils from the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana no. 2, pp.229–49.Google Scholar
Yin, Leiming. 1987. Microbiotas of latest Precambrian sequences in China. In Stratigraphy and Palaeontolgy of Systemic Boundaries in China: Precambrian-Cambrian Boundary, vol. 1 (compiler Nanjing Institute of Geology and Palaeontology, Academia Sinica), pp. 415522. Nanjing University Publishing House.Google Scholar
Zang, W. L. & Walter, M. R. 1989. Latest Proterozoic plankton from the Amadeus Basin in central Australia. Nature 337, 642–5.CrossRefGoogle Scholar