Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:47:11.881Z Has data issue: false hasContentIssue false

Multi-stage growth and fluid evolution of a hydrothermal sulphide chimney in the East Pacific Ridge 1–2° S hydrothermal field: constraints from in situ sulphur isotopes

Published online by Cambridge University Press:  11 May 2018

XINGWEI MENG
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
XIAOHU LI*
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
FENGYOU CHU
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
BIN FU
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia
JIJIANG LEI
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
ZHENGGANG LI
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
HAO WANG
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
LIN CHEN
Affiliation:
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
*
Author for correspondence: xhli@sio.org.cn

Abstract

Sulphur isotopes can be used as a powerful tool to trace fluid evolution and explore the formation of chimneys. To clarify the in situ S isotopic variations of sulphides at the micro-scale, we analyzed a sulphide chimney collected from the hydrothermal field in the East Pacific Rise 1–2° S using a sensitive high-mass-resolution ion micro-probe for stable isotopes (SHRIMP SI). Three mineral zones can be identified in the chimney: an external outer wall of porous anhydrite and colloform pyrite, an internal middle zone of sub-euhedral pyrite and massive chalcopyrite, and an inner zone of massive pyrite. The δ34SV-CDT values of the sulphides fall within the range 1.83–7.51 ‰ (avg. 4.05 ‰, n = 16), and S isotopic values increase from the core (3.09 ‰, n = 3) to the middle (3.78 ‰, n = 11) to the edge (6.99 ‰, n = 2). These results illustrate mineral crystallization processes and the mixing between seawater-derived S and magmatic–hydrothermal fluids during the growth of the chimney. The zones from the edge to the core are characterized by crystal morphologies of colloform/anhedral pyrite to massive pyrite with decreasing δ34S values, revealing multi-stage mineral deposition and sulphur isotopic fractionation. In contrast to the increase in δ34S values from the core to the edge in one profile (profile A), anomalously low δ34S values in fine-grained pyrite relative to chalcopyrite in another profile (profile B) in the middle zone result from S isotopic exchange between seawater SO42− and fluid H2S due to different fluid–seawater mixing, possibly caused by variations in permeability and porosity across the chimney.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J. C. & Shanks, W. C. 2011. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth & Planetary Science Letters 310, 7383.CrossRefGoogle Scholar
Berkenbosch, H. A., Ronde, C. E. J. D., Gemmell, J. B., Mcneill, A. W. & Goemann, K. 2012. Mineralogy and formation of black smoker chimneys from Brothers Submarine Volcano, Kermadec Arc. Economic Geology 107, 1613–33.CrossRefGoogle Scholar
Blum, N. & Puchelt, H. 1991. Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Mineralium Deposita 26, 217–27.CrossRefGoogle Scholar
Bluth, G. J. & Ohmoto, H. 1988. Sulfide-sulfate chimneys on the East Pacific Rise, 11° and 13° N latitudes. Part II: sulfur isotopes. Canadian Mineralogist 26, 487504.Google Scholar
Böhlke, J. K. & Shanks, W. C. 1994. Stable isotope study of hydrothermal vents at Escanaba Trough: observed and calculated effects of sediment-seawater interaction. U. S. Geological Survey Bulletin 2022, 223–39.Google Scholar
Bowers, T. S. 1989. Stable isotope signatures of water-rock interaction in mid-ocean ridge hydrothermal systems: sulfur, oxygen, and hydrogen. Journal of Geophysical Research: Solid Earth 94, 5775–86.CrossRefGoogle Scholar
Brett, R., Evans, H. T. Jr, Gibson, E. K. Jr, Hedenquist, J. W., Wandless, M. V. & Sommer, M. A. 1987. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth 92, 11373–9.CrossRefGoogle ScholarPubMed
Canfield, D. E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta 65, 1117–24.CrossRefGoogle Scholar
Chen-Long, A. N., Fan, D. J., Sun, X. X. & Yang, Z. S. 2014. Study of suspended particulate sulfides in the Eastern Pacific Rise area and their connection with seafloor hydrothermal activities. Periodical of Ocean University of China 44, 7583 (in Chinese with English summary).Google Scholar
Crowe, D. E. & Valley, J. W. 1992. Laser microprobe study of sulfur isotope variation in a sea-floor hydrothermal spire, Axial Seamount, Juan de Fuca Ridge, eastern Pacific. Chemical Geology Isotope Geoscience 101, 6370.CrossRefGoogle Scholar
Crowe, D. E. & Vaughan, R. G. 1996. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios. American Mineralogist 81, 187–93.CrossRefGoogle Scholar
Deming, J. W. & Baross, J. A. 1993. Deep-sea smokers: windows to a subsurface biosphere? Geochimica et Cosmochimica Acta 57, 3219–30.CrossRefGoogle ScholarPubMed
Dick, H. J. B., Lin, J. & Schouten, H. 2003. An ultraslow-spreading class of ocean ridge. Nature 426, 405412.CrossRefGoogle ScholarPubMed
Ding, X., Li, J., Zheng, C. Q., Huang, W., Cui, R. Y., Dou, Y. G & Sun, Z. L. 2014. Chemical composition of the basalts on East Pacific Rise (1.5° N–1.5° S) and south Mid-Atlantic Ridge (13.2° S). Marine Geology Quaternary Geology 5, 5766 (in Chinese with English summary).Google Scholar
Duckworth, R. C., Fallick, A. E. & Rickard, D. 1994. Mineralogy and sulfur isotopic composition of the Middle Valley massive sulfide deposit, northern Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results 139, 373–85.Google Scholar
Duckworth, R. C., Knott, R., Fallick, A. E., Rickard, D., Murton, B. J. & Van Dover, C. 1995. Mineralogy and sulphur isotope geochemistry of the Broken Spur sulphides, 29° N, Mid-Atlantic Ridge. In Hydrothermal Vents and Processes (eds Parson, L. M., Walker, C. L. & Dixon, D. R.), pp. 175–89. Geological Society of London, Special Publication no. 87.Google Scholar
Gavelin, S., Parwel, A. & Ryhage, R. 1960. Sulfur isotope fractionation in sulfide mineralization. Economic Geology 55, 510–30.CrossRefGoogle Scholar
Goldfarb, M., Converse, D., Holland, H. & Edmond, J. 1983. The genesis of hot spring deposits on the East Pacific Rise, 21° N. Economic Geology Monograph 5, 184–97.Google Scholar
Goodfellow, W. D. & Franklin, J. M. 1993. Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge. Economic Geology 88, 2037–68.CrossRefGoogle Scholar
Graham, U. M., Bluth, G. J. & Ohmoto, H. 1988. Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes; Part I, Mineralogy and paragenesis. Canadian Mineralogist 26, 487504.Google Scholar
Hannington, M. D. & Scott, S. D. 1988. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge. Canadian Mineralogist 26, 603–25.Google Scholar
Haymon, R. M. 1983. Growth history of hydrothermal black smoker chimneys. Nature 301, 695–8.CrossRefGoogle Scholar
Hekinian, R., Fevrier, M., Bischoff, J. L., Picot, P. & Shanks, W. C. 1980. Sulfide deposits from the East Pacific Rise near 21° N. Science 207, 1433–44.CrossRefGoogle ScholarPubMed
Herzig, P. M., Hannington, M. D. & Arribas, A. A. Jr. 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Mineralium Deposita 33, 226–37.CrossRefGoogle Scholar
Herzig, P. M., Petersen, S. & Hannington, M. D. 1998. Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26 N. Veterinary Immunology & Immunopathology 123, 32–44.Google Scholar
Holler, G. 1999. Models of magmatic and hydrothermal development of the fast-spreading southern East Pacific Rise. Neues Jahrbuch für Geologie und Palaontologie – Abhandlungen 214, 275300.CrossRefGoogle Scholar
Holler, G. & Marchig, V. 1990. Hydrothermal activity on the East Pacific Rise: stages of development. Geologisches Jahrbuch Reihe B 75, 322.Google Scholar
Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N. & Williams, I. S. 2008. Development of SHRIMP. Applied Energy 86, S77–S85.Google Scholar
Ireland, T. R., Schram, N., Holden, P., Lanc, P., Ávila, J., Armstrong, R., Amelin, Y., Latimore, A., Corrigan, D. & Clement, S. 2014. Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI. International Journal of Mass Spectrometry 359, 2637.CrossRefGoogle Scholar
Janecky, D. R. & Shanks, W. C. I. 1988. Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones. Canadian Mineralogist 26, 805–25.Google Scholar
Keith, M., Haase, K. M., Klemd, R., Krumm, S. & Strauss, H. 2016a. Systematic variations in the trace element and sulphur isotope composition of pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulphide deposit, Troodos ophiolite, Cyprus. Chemical Geology 423, 718.CrossRefGoogle Scholar
Keith, M., Häckel, F., Haase, K. M., Schwarz-Schampera, U. & Klemd, R. 2016b. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews 72, 728–45.CrossRefGoogle Scholar
Kerridge, J. F., Haymon, R. M. & Kastner, M. 1983. Sulfur isotope systematics at the 21° N site, East Pacific Rise. Earth & Planetary Science Letters 66, 91100.CrossRefGoogle Scholar
Kim, J., Lee, I., Halbach, P., Lee, K. Y., Ko, Y. T. & Kim, K. H. 2006. Formation of hydrothermal vents in the North Fiji Basin: sulfur and lead isotope constraints. Chemical Geology 233, 257–75.CrossRefGoogle Scholar
Knott, R., Fouquet, Y., Honnorez, J., Petersen, S. & Bohn, M. 1998. Petrology of hydrothermal mineralization: a vertical section through the TAG mound. Proceedings of the Ocean Drilling Program, Scientific Results 158, 526.Google Scholar
Koski, R. A., Jonasson, I. R., Kadko, D., Smith, V. K. & Wong, F. L. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide‐sulfate‐silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research 99, 4813–32.CrossRefGoogle Scholar
Kristall, B., Kelley, D. S., Hannington, M. D. & Delaney, J. R. 2006. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study. Geochemistry Geophysics Geosystems 7, 509–17.CrossRefGoogle Scholar
Kristall, B., Nielsen, D., Hannington, M. D., Kelley, D. S. & Delaney, J. R. 2011. Chemical microenvironments within sulfide structures from the Mothra Hydrothermal Field: evidence from high-resolution zoning of trace elements. Chemical Geology 290, 1230.CrossRefGoogle Scholar
Kusakabe, M., Mayeda, S. & Nakamura, E. 1990. S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18° N. Earth & Planetary Science Letters 100, 275–82.CrossRefGoogle Scholar
Lein, A. Y., Ulyanova, N. V., Ulyanov, A. A., Cherkashev, G. A. & Stepanova, T. V. 2001. Mineralogy and geochemistry of sulfide ores in ocean-floor hydrothermal fields associated with serpentinite protrusions. Russian Journal of Earth Sciences 3, 371–93.CrossRefGoogle Scholar
Lever, M. A., Rouxel, O., Alt, J. C., Shimizu, N., Ono, S., Coggon, R. M., Rd, S. W., Lapham, L., Elvert, M. & Prietomollar, X. 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science 339, 1305–8.CrossRefGoogle ScholarPubMed
Lode, S., Piercey, S. J., Layne, G. D., Piercey, G. & Cloutier, J. 2017. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada. Mineralium Deposita 52, 105–28.CrossRefGoogle Scholar
MacDonald, K. C. & Fox, P. J. 1983. Overlapping spreading centres: new accretion geometry on the East Pacific Rise. Nature 302, 55–8.CrossRefGoogle Scholar
Marchig, V., Blum, N. & Roonwal, G. 1997. Massive sulfide chimneys from the East Pacific rise at 7° 24ʹS and 16° 43ʹS. Marine Georesources & Geotechnology 15, 4966.CrossRefGoogle Scholar
McDermott, J. M., Ono, S., Tivey, M. K., Seewald, J. S., Shanks, W. C. & Solow, A. R. 2015. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes. Geochimica et Cosmochimica Acta 160, 169–87.CrossRefGoogle Scholar
Ohmoto, H. 1997. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), pp. 517612. New York: John Wiley & Sons Ltd.Google Scholar
Ohmoto, H. & Lasaga, A. C. 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta 46, 1727–45.CrossRefGoogle Scholar
Ohmoto, H. & Rye, R. O. 1979. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), pp. 506–67. New York: John Wiley & Sons Ltd.Google Scholar
Ono, S., Shanks, W. C., Rouxel, O. J. & Rumble, D. 2007. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimica et Cosmochimica Acta 71, 1170–82.CrossRefGoogle Scholar
Peng, X. & Zhou, H. 2005. Growth history of hydrothermal chimneys at EPR 9–10° N: a structural and mineralogical study. Science China Earth Sciences 48, 1891–99.CrossRefGoogle Scholar
Peter, J. M. & Iii, W. C. S. 1992. Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA. Geochimica et Cosmochimica Acta 56, 2025–40.CrossRefGoogle Scholar
Petersen, S., Herzig, P. M., Hannington, M. D., Jonasson, I. R. & Arribas, A. Jr. 2002. Submarine gold mineralization near Lihir Island, New Ireland ForeArc, Papua New Guinea. Economic Geology 97, 1795–813.CrossRefGoogle Scholar
Rees, C. E., Jenkins, W. J. & Monster, J. 1978. The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta 42, 377–81.CrossRefGoogle Scholar
Rona, P. A., Hannington, M. D., Raman, C. V., Thompson, G., Tivey, M. K., Humphris, S. E., Lalou, C. & Petersen, S. 1993. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Economic Geology 88, 19892017.CrossRefGoogle Scholar
Ronde, C. E. D., Faure, K., Bray, C. J., Chappell, D. A. & Wright, I. C. 2003. Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Mineralium Deposita 38, 217–33.CrossRefGoogle Scholar
Rouxel, O., Fouquet, Y. & Ludden, J. N. 2004a. Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes 1. Geochimica et Cosmochimica Acta 68, 2295–311.CrossRefGoogle Scholar
Rouxel, O. D., Fouquet, Y. & Ludden, J. N. 2004b. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge. Economic Geology 99, 585600.CrossRefGoogle Scholar
Rouxel, O., Shanks, W. C., Bach, W. & Edwards, K. J. 2008a. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10° N. Chemical Geology 252, 214–27.CrossRefGoogle Scholar
Rouxel, O., Ono, S., Alt, J., Rumble, D. & Ludden, J. 2008b. Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth & Planetary Science Letters 268, 110–23.CrossRefGoogle Scholar
Sakai, H., Marais, D. J. D., Ueda, A. & Moore, J. G. 1984. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta 48, 2433–41.CrossRefGoogle ScholarPubMed
Shanks, W. C. 2001. Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Reviews in Mineralogy & Geochemistry 43, 469525.CrossRefGoogle Scholar
Shanks, W. C. & Niemitz, J. 1982. Sulfur isotope studies of hydrothermal anhydrite and pyrite, Deep Sea Drilling Project Leg 64, Guaymas Basin, Gulf of California. Initial Rep. Deep Sea Drill. Proj 64, 1137–42.Google Scholar
Shanks, W. C. & Seyfried, W. E. 1987. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. Journal of Geophysical Research 92, 11387–99.CrossRefGoogle Scholar
Shao, M. J., Yang, Y. M., Xin, S. U., Jun, Y. E., Shi, X. F. & Geology, E. 2014. Study on chimney mineralogy from the 26° S hydrothermal field in South Mid-Atlantic Ridge. China Mining Magazine 5, 7781.Google Scholar
Sim, M. S., Bosak, T. & Ono, S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science 333, 74–7.CrossRefGoogle Scholar
Sours-Page, R., Nielsen, R. L. & Batiza, R. 2002. Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise. Chemical Geology 183, 237–61.CrossRefGoogle Scholar
Stuart, F. M., Duckworth, R., Turner, G. & Schofield, P. F. 1994. Helium and sulfur isotopes of sulfide minerals from Middle Valley, northern Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results 139, 387–92.Google Scholar
Styrt, M. M., Brackmann, A. J., Holland, H. D., Clark, B. C., Pisutha-Arnond, V., Eldridge, C. S. & Ohmoto, H. 1981. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21° N latitude. Earth & Planetary Science Letters 53, 382–90.CrossRefGoogle Scholar
Syverson, D. D., Borrok, D. M., & Seyfried, W. E. Jr, 2013. Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochimica et Cosmochimica Acta 122, 170–83.CrossRefGoogle Scholar
Tanner, D., Henley, R. W., Mavrogenes, J. A. & Holden, P. 2016. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit, Chile. Contributions to Mineralogy & Petrology 171 (4), 33.133.17.CrossRefGoogle Scholar
Tao, C., Li, H., Wu, G., Su, X., Zhang, G. &; Chinese DY115-21 Leg 3 Scientific Party. 2011. First hydrothermal active vent discovered on the Galapagos Microplate. AGU Fall Meeting Abstract OS11B-1488.Google Scholar
Tao, C., Lin, J., Wu, G., German, C. R., Yoerger, D. R., Chen, Y. J., Guo, S., Zeng, Z., Han, X. & Zhou, N. 2008. First active hydrothermal vent fields discovered at the equatorial Southern East Pacific Rise. AGU Fall Meeting Abstract V41B-2081.Google Scholar
Tivey, M. K. 1995. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction. Geochimica et Cosmochimica Acta 59, 1933–49.CrossRefGoogle Scholar
Tivey, M. K. 1998. How to build a black smoker chimney. Oceanus 41, 22–6.Google Scholar
Tivey, M. K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 35 (7), 1703–14.Google Scholar
Tivey, M. K. & McDuff, R. E. 1990. Mineral precipitation in the walls of black smoker chimneys: a quantitative model of transport and chemical reaction. Journal of Geophysical Research Atmospheres 95, 12617– 37.CrossRefGoogle Scholar
Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. Journal of Geophysical Research Atmospheres 100, 12527–55.CrossRefGoogle Scholar
Tivey, M. K., Zhu, W. & Kelley, D. S. 2001. Laboratory quantification of permeability and pore structure in seafloor hydrothermal vent deposit samples. Eos 82 (47), Fall Meeting Supplement, Abstract OS21B-0452.Google Scholar
Wang, L. & Zhu, Y. 2015. Multi-stage pyrite and hydrothermal mineral assemblage of the Hatu gold district (west Junggar, Xinjiang, NW China): implications for metallogenic evolution. Ore Geology Reviews 69, 243–67.CrossRefGoogle Scholar
Wohlgemuth-Ueberwasser, C. C., Viljoen, F., Petersen, S. & Vorster, C. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta 159, 1641.CrossRefGoogle Scholar
Woodruff, L. G. & Shanks, W. C. 1988. Sulfur isotope study of chimney minerals and vent fluids from 21° N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction. Journal of Geophysical Research Atmospheres 93, 4562–72.CrossRefGoogle Scholar
Zeng, Z. G., Chen, S., Selby, D., Yin, X. & Wang, X. 2014. Rhenium–osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: implications for vent associated ore forming processes. Earth & Planetary Science Letters 396, 223–34.CrossRefGoogle Scholar
Zeng, Z. G., Jiang, F. Q., Qin, W. S. & Qu, S. K. 2001. Sulfur isotopic composition of modern seafloor hydrothermal sediment and its geological significance. Acta Oceanologica Sinica 23, 4856 (in Chinese with English summary).Google Scholar
Zeng, Z. G., Ma, Y., Yin, X., Selby, D., Kong, F. & Chen, S. 2015b. Factors affecting the rare earth element compositions in massive sulfides from deep‐sea hydrothermal systems. Geochemistry Geophysics Geosystems 16, 2679–93.CrossRefGoogle Scholar
Zeng, Z. G., Ma, Y., Chen, S., Selby, D., Wang, X. & Yin, X. 2016. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation. Ore Geology Reviews 87, 155–71..CrossRefGoogle Scholar
Zeng, Z. G., Niedermann, S., Chen, S., Wang, X. & Li, Z. 2015a. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes. Chemical Geology 409, 111.CrossRefGoogle Scholar
Zeng, Z. G., Qin, Y. S., Zhao, Y. Y. & Zhai, S. K. 2000. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic ridge and its geological implications. Acta Oceanologica Sinica 31, 518–29.Google Scholar
Zeng, Z. G., Zhang, W., Rong, S. B., Wang, X. Y., Chen, S., Cui, L. K., Jiang, S. L. & Qi, H. Y. 2015c. Seafloor hydrothermal activity and polymetallic sulfide resources potential in the East Pacific Rise. Bulletin of Mineralogy, Petrology and Geochemistry 34, 938–46 (in Chinese with English summary).Google Scholar
Zhang, Y., Shao, Y. J., Chen, H. Y., Liu, Z. F. & Li, D. F. 2016. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: evidence from sulfide geochemistry and sulfur isotopes. Ore Geology Reviews 88, 534–49.CrossRefGoogle Scholar
Zhu, W., Tivey, M. K., Gittings, H. & Craddock, P. R. 2007. Permeability‐porosity relationships in seafloor vent deposits: dependence on pore evolution processes. Journal of Geophysical Research: Solid Earth 112, 2637–55.CrossRefGoogle Scholar
Zierenberg, R. A. & Shanks, W. C. 1988. Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Canadian Mineralogist 26, 737–53.Google Scholar
Zierenberg, R. A. & Shanks, W. C. 1994. Sediment alteration associated with massive sulfide formation in Escanaba Trough, Gorda Ridge: the importance of seawater mixing and magnesium metasomatism. US Geological Survey Bulletin 2022, 257–77.Google Scholar
Zierenberg, R. A., Shanks, W. C. & Bischoff, J. L. 1984. Massive sulfide deposits at 21° N, East Pacific Rise: chemical composition, stable isotopes, and phase equilibria. Geological Society of America Bulletin 95, 922–9.2.0.CO;2>CrossRefGoogle Scholar