Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-22T00:33:32.143Z Has data issue: false hasContentIssue false

Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite 'Series', central East Greenland

Published online by Cambridge University Press:  01 May 2009

J. W. Green
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
A. H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
K. Swett
Affiliation:
Department of Geology, University of Iowa, Iowa City, Iowa 52242, U.S.A.

Abstract

Silicified flake conglomerates and in situ stratiform stromatolites of the Upper Proterozoic (c. 700–800 Ma) Limestone-Dolomite ‘Series’, central East Greenland, contain well preserved microfossils. Five stratigraphic horizons within the 1200 m succession contain microbial mat assemblages, providing a broad palaeontological representation of late Proterozoic peritidal mat communities. Comparison of assemblages demonstrates that the taxonomy and diversity of mat builder, dweller, and allochthonous populations all vary considerably within and among horizons. The primary mat builder in most assemblages is Siphonophycus inornatum, a sheath-forming prokaryote of probable but not unequivocally established cyanobacterial affinities. An unusual low diversity unit in Bed 17 is dominated by a different builder, Tenuofilum septatum, while a thin cryptalgal horizon in Bed 18 is built almost exclusively by Siphonophycus kestron. Although variable taphonomic histories contribute to observed assemblage variation, most differences within and among horizons appear to reflect the differential success or failure of individual microbial populations in colonizing different tidal flat microenvironments. Twenty-two taxa are recognized, of which two are described as new: Myxococcoides stragulescens n.sp. and Scissilisphaera gradata n. sp.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Thukair, A. A. & Green, J. W. 1988. A comparison of modern and ancient marine endoliths. Journal of Phycology 24, (supplement to July 1988), 12.Google Scholar
Bauld, J. 1984. Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In Microbial Mats: Stromatolites, (eds. Cohen, Y., Castenholz, R. W., Halvorson, H. O.), pp. 3958. New York. Alan R. Liss, Inc.Google Scholar
Bertrand-Sarfati, J. & Caby, R. 1976. Précisions sur lâge précambrien terminal (vendien) de la série carbonatée à stromatolites du groupe d'Éléonore Bay (Groenland oriental). Académie des Sciences, Comptes Rendus, Series D 278, 2267–70.Google Scholar
Corliss, J. O. & Esser, S. C. 1974. Comments on the role of the cyst in the life cycle and survival of free-living protozoa. Transactions of the American Microscopy Society 93, 578–93.CrossRefGoogle ScholarPubMed
Dor, I. 1985. Long-lasting effect of dilution on the cell volume, motility, division rate and vertical distribution of Dunaliella parva Lerche. Journal of Experimental Marine Biology and Ecology 91, 183–97.Google Scholar
Eha, S. 1953. The pre-Devonian sediments of Ymers Ø, Suess Land, and Ella Ø (East Greenland) and their tectonics. Meddelelser om Gronland 111, 1105.Google Scholar
Enos, P. 1983. Shelf. In Carbonate Depositional Environments (ed. Scholle, P.A., Bebout, D. G., Moore, C. H.), pp. 267–95. American Association of Petroleum Geologists Memoir no. 33.Google Scholar
Ercegovic, A. 1932. Études écologiques et sociologiques des Cyanophycees lithophytes de la côte yougoslave de l'adriatique. Académie Yougoslave des Sciences et Arts, Classe Sciences Mathématiques Naturelles, Bulletin Internationale 26, 3356.Google Scholar
Fenton, C. L. 1943. Pre-Cambrian and Early Paleozoic algae. American Midland Naturalist 30, 83112.CrossRefGoogle Scholar
Fränkl, E. 1953. Geologische Untersuchungen in Ost-Andrées Land (Nordostgrønland). Meddelelser om Gronland 113, 1160.Google Scholar
Gebelein, C. D. 1969. Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. Journal of Sedimentary Petrology 39, 4969.Google Scholar
Geitler, L. 1925. Synoptische Darstellung der Cyanophyceen in morphologische und systematischer Hinsicht. Beihefte Botanisches Centralblat II, 41, 163294.Google Scholar
Golubic, S. 1976. Organisms that build stromatolites. In Stromatolites (ed. Walter, M. R.), pp. 113–26. Elsevier.CrossRefGoogle Scholar
Golubic, S. 1985. Microbial mats and modern stromatolites in Shark Bay, Western Australia. In Planetary Geology (ed. Caldwell, D. E., Brierley, J. A., Brierley, C. L.), pp. 316. New York: Van Nostrand Reinhold.Google Scholar
Green, J. W., Knoll, A. H., Golubic, S. & Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite 'Series', central East Greenland. American Journal of Botany 74, 928–40.Google Scholar
Green, J. W., Knoll, A. H. & Swett, K. 1988. Microfossils from oolites and pisolites of the upper Proterozoic Eleonore Bay Group, central East Greenland. Journal of Paleontology 62, 835–52.Google Scholar
Haller, J. 1971. Geology of the East Greenland Caledonides. New York: Wiley-Interscience. 413 pp.Google Scholar
Hardie, L. A. 1977. Algal structures in cemented crusts and their environmental significance. In Sedimentation on the modern carbonate tidal flats of Northwest Andros Island, Bahamas (ed. Hardie, L. A.), pp. 159–77. Baltimore: Johns Hopkins University Press.Google Scholar
Hardie, L. A. 1977. Distinctive features of a rainy, low-energy, tropical carbonate tidal flat: a summary. In Sedimentation on the modern carbonate tidal flats of northwest Andros Island, Bahamas (ed. Hardie, L. A.), pp. 178–83. Baltimore: Johns Hopkins University Press.Google Scholar
Herrington, P. M. & Fairchild, I. J. 1989. Carbonate shelf and slope facies evolution prior to Vendian glaciation, central East Greenland. In Scandinavian Caledonides (ed. Gayer, R.). London: Graham and Trotman, in press.Google Scholar
Horodyski, R. J., Bloeser, B. & Vonder Haar, S. 1977. Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. Journal of Sedimentary Petrology 47, 680–96.Google Scholar
Horodyski, R. J. & Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research 11, 125–59.Google Scholar
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium of Quantitative Biology 22, 415–27.Google Scholar
Katz, H. R. 1952. Zur Geologie von Strindbergs Land (Nordostgrønland). Meddelelser om Gronland 111, 1150.Google Scholar
Katz, H. R. 1961. Late Precambrian to Cambrian stratigraphy in East Greenland. In Raasch, G. E. (ed.), Geology of the Arctic, I (ed. Raasch, G. E.), pp. 299328. University of Toronto Press.Google Scholar
Knoll, A. H. 1981. Paleoecology of late Precambrian microbial assemblages. In Paleobotany, Paleoecology, and Evolution, vol. I. (ed. Niklas, K.), pp. 1754. New York: Praeger.Google Scholar
Knoll, A. H. 1982. Microorganisms from the late Precambrian Draken Conglomerate, Ny Friesland, Spitsbergen. Journal of Paleontology 56, 755–90.Google Scholar
Knoll, A. H. 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology 58, 131–62.Google Scholar
Knoll, A. H. & Calder, S. 1983. Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalvard. Palaeontology 26, 467–96.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–8.Google Scholar
Koch, L. 1929. The geology of East Greenland. Meddelelser om Gronland 73, 1204.Google Scholar
Komarek, J. & Hindak, F. 1975. Taxonomy of the new isolated strains of Chroococcidiopsis (Cyanophyceae). Archiv für Hydrobiologie, Supplementeband 46, 311–29.Google Scholar
Komarek, J. & Anagnostidis, K. 1986. Modern approach to the classification system of cyanophytes: 2 – Chroococcales. Archiv für Hydrobiologie, Supplementeband 73, 157226.Google Scholar
Logan, B. W., Hoffman, P. & Gebelein, C. D. 1974. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. In Evolution and Diagenesis of Quaternary Carbonate Sequences, Shark Bay, Western Australia (ed. Logan, B.W., Read, J.F., Hagan, G. M., Hoffman, P., Brown, R.G., Woods, P. J., Gebelein, C.D.), pp. 140–94. American Association of Petroleum Geologists Memoir no. 22.Google Scholar
Margulis, L., Grosovsky, B. D. D., Stolz, J. F., Gong-Collins, E. J., Lenk, S., Read, D. & Lopez-Cortes, A, 1983. Distinctive microbial structures and the pre-Phanerozoic fossil record. Precambrian Research 2, 443–77.Google Scholar
Nageli, C. 1849. Gattungen einzelliger Algen, Physiologisch und Systematish bearbeitet. Neue Denkschriften der Allgemeinen Schweizerischen Gessellschaft für die Gesammten Naturwissenschaften 10, 139.Google Scholar
Neumann, A. C., Gebelein, C. D. & Scoffin, T. P. 1970. The composition, structure and erodability of subtidal mats, Abaco, Bahamas. Journal of Sedimentary Petrolology 40, 274–97.Google Scholar
Read, L. K., Margulis, L., Stolz, J. F., Obar, R. & Sawyer, T. K. 1983. A new strain of Paratetramitus jugosus from Laguna Figueroa, Baja California, Mexico. Biological Bulletin 165, 241–64.CrossRefGoogle Scholar
Rex, D. C. & Gledhill, A. R. 1981. Isotopic studies in the East Greenland Caledonides (72°–74° N) – Precambrian and Caledonian ages. Grønlands Geologiske Undersogelse Rapport 104, 4772.Google Scholar
Schaub, H. P. 1950. On the Pre-Cambrian to Cambrian sedimentation in NE-Greenland. Meddelelser om Grønland 114, 150.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs, late Precambrian, central Australia. Journal of Paleontology 42, 651–88.Google Scholar
Sellwood, B. W. 1978. Shallow-water carbonate environments. In Sedimentary Environments and Facies (ed. Reading, H.G.), pp. 259313. New York: Elsevier.Google Scholar
Shinn, E. A. 1983. Tidal flat environment. In Carbonate Depositional Environments (ed. Scholle, P.A., Bebout, D.G., Moore, C.H.), pp. 171210. American Association of Petroleum Geologists Memoir no. 33.Google Scholar
Stanier, R. Y. 1977. The position of cyanobacteria in the world of phototrophs. Carlsberg Research Communications 42, 7798.CrossRefGoogle Scholar
Swett, K. & Knoll, A. H. 1989. Marine pisolites from Upper Proterozoic successions of Greenland and Spitsbergen. Sedimentology 36, 7593.Google Scholar
Teichert, C. 1933. Untersuchungen zum Bau des kaledo-nischen Gebirges in Ostgronland. Meddelelser om Gronland 95, 112.Google Scholar
Vidal, G. 1976. Late Precambrian acritarchs from the Eleonare Bay Group and Tillite Group in East Greenland: a preliminary report. Grønlands Geologiske Undersøgelse Rapport no. 78.Google Scholar
Vidal, G. 1979. Acritarchs from the Upper Proterozoic and Lower Cambrian of East Greenland. Gronlands Geologiske Undersøgelse Bulletin 134, 155.Google Scholar
Walcott, C. D. 1914. Cambrian geology and paleontology III: Precambian Algonkian algal flora. Smithsonian Miscellaneous Collections 64, 77156.Google Scholar
Waterbury, J. B. & Stainer, R. Y. 1978. Patterns of growth and development in pleurocapsalean Cyanobacteria. Microbiology Reviews 42, 244.Google Scholar
Wilson, J. E. & Jordan, C. 1983. Middle Shelf. In Carbonate Depositional Environments (ed. Scholle, P.A., Bebout, D.G., Moore, C.H.), pp. 297343. American Association of Petroleum Geologists Memoir no. 33.Google Scholar
Woese, C. R. & Fox, G. E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74, 5088–90.Google Scholar
Zhang, Y. & Golubic, S. 1987. Endolithic microfossils (Cyanophyta) from Early Proterozoic stromatolites, Hebei province, China. Acta Micropalaeontologica Sinica 4, 315.Google Scholar