Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T17:19:13.167Z Has data issue: false hasContentIssue false

Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA

Published online by Cambridge University Press:  13 March 2017

BERTRAND LEFEBVRE*
Affiliation:
UMR CNRS 5276, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Campus de la Doua, Université Claude Bernard Lyon 1, 2 rue Raphaël Dubois, 69622 Villeurbanne, France
RUDY LEROSEY-AUBRIL
Affiliation:
Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, New South Wales 2351, Australia
*
Author for correspondence: bertrand.lefebvre@univ-lyon1.fr

Abstract

A new solutan echinoderm, Pahvanticystis utahensis gen. et sp. nov. is described from the upper part of the Weeks Formation (Guzhangian). The Cambrian (Series 3) succession of the central House Range in western Utah documents the early diversification of the class Soluta, which is characterized by a major ecological transition from sessile, ‘pelmatozoan’ primitive taxa (Coleicarpus, Wheeler Formation), to more and more vagile, temporarily attached (Castericystis, Marjum Formation), to mostly unattached, ‘homalozoan’ derived forms (Pahvanticystis, Weeks Formation). The morphology of Pahvanticystis is remarkably intermediate between those of Castericystis and Minervaecystis. Its twisted, flattened dististele possibly represents an adaptation for a more efficient crawling atop soft substrates. This morphological feature also questions the phylogenetic relationships between syringocrinid and dendrocystitid solutans, and the possible evolution of the latter from basal, Pahvanticystis- or Minervaecystis-like syringocrinids by paedomorphosis.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bather, F. A. 1913. Caradocian Cystidea from Girvan. Transactions of the Royal Society of Edinburgh 49, 359529.CrossRefGoogle Scholar
Bell, G. L. & Sprinkle, J. 1980. New homoiostelean echinoderms from the Late Cambrian of Alabama. Geological Society of America, Abstracts wih Programs 12, 385.Google Scholar
Botting, J. P., Muir, L. A. & Lefebvre, B. 2013. Echinoderm diversity and environmental distribution in the Ordovician of the Builth Inlier, Wales. Palaios 28, 293304.CrossRefGoogle Scholar
Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D. & Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and Lagerstätten in the Middle Cambrian Wheeler and Marjum formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 933.CrossRefGoogle Scholar
Bruguière, J. G. 1791. Tableau encyclopédique et méthodique des trois règnes de la nature, contenant l'helminthologie, ou les vers infusoires, les vers intestins, les vers mollusques, etc., Vol. 7. Paris: Panckoucke, 180 pp.Google Scholar
Caster, K. E. 1968. Homoiostela. In Treatise on Invertebrate Paleontology. Part S. Echinodermata 1(2) (ed. Moore, R. C.), pp. S581–S627. New York: Geological Society of America; Lawrence, KS: University of Kansas.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J. X. 2013. The ICS International Chronostratigraphic Chart. Episodes 36, 199204.CrossRefGoogle Scholar
Daley, P. E. J. 1992. The anatomy of the solute Girvanicystis batheri (?Chordata) from the Upper Ordovician of Scotland and a new species of Girvanicystis from the Upper Ordovician of South Wales. Zoological Journal of the Linnean Society 105, 353–75.CrossRefGoogle Scholar
Daley, P. E. J. 1995. Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah. Geobios 28, 585615.CrossRefGoogle Scholar
Daley, P. E. J. 1996. The first solute which is attached as an adult: a Mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zoological Journal of the Linnean Society 117, 405–40.CrossRefGoogle Scholar
David, B., Lefebvre, B., Mooi, R. & Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26, 529–55.2.0.CO;2>CrossRefGoogle Scholar
Derstler, K. L. 1975. Carpoid echinoderms from Pennsylvania. Geological Society of America, Abstracts with Programs 7, 48.Google Scholar
Domke, K. L. & Dornbos, S. Q. 2010. Paleoecology of the middle Cambrian edrioasteroid echinoderm Totiglobus: implications for unusual Cambrian morphologies. Palaios 25, 209–14.CrossRefGoogle Scholar
Dornbos, S. Q. 2006. Evolutionary paleoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 225–39.CrossRefGoogle Scholar
Dornbos, S. Q. & Bottjer, D. J. 2000. Evolutionary paleoecology of the earliest echinoderms: helicoplacoids and the Cambrian substrate revolution. Geology 28, 839–42.2.0.CO;2>CrossRefGoogle Scholar
Dornbos, S. Q., Bottjer, D. J. & Chen, J. Y. 2005. Paleoecology of benthic metazoans in the early Cambrian Maotianshan Shale biota and the middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 4767.CrossRefGoogle Scholar
Gehling, J. G. 1987. Earliest known echinoderm – a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa 11, 337–45.CrossRefGoogle Scholar
Gill, E. D. & Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology 41, 171.Google Scholar
Guensburg, T. E. & Sprinkle, J. 2000. Ecologic radiation of Cambro-Ordovician echinoderms. In The Ecology of the Cambrian Radiation (eds Zhuravlev, A. Y. & Riding, R.), pp. 428–44. New York: Columbia University Press.CrossRefGoogle Scholar
Hintze, L. F. & Davis, F. D. 2003. Geology of Millard County, Utah. Utah Geological Survey Bulletin 133, 305 pp.Google Scholar
Jaekel, O. 1901. Über Carpoideen, eine neue Klasse von Pelmatozoen. Zeitschrift der Deutschen geologischen Gesellschaft 52, 661–77.Google Scholar
Jefferies, R. P. S. 1990. The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology 33, 631–79.Google Scholar
Jefferies, R. P. S. & Prokop, R. J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. Biological Journal of the Linnean Society 4, 69115.CrossRefGoogle Scholar
Klein, J. T. 1734. Naturalis dispositio Echinodermatum. Accessit lucubratiuncula de Aculeis Echinorum Marinorum, cum spicilegio de Belemnitis. Gedani [Danzig]: Schreiber, 79 pp.Google Scholar
Kloss, T. J., Dornbos, S. Q. & Chen, J. 2015. Substrate adaptations of sessile benthic metazoans during the Cambrian Radiation. Paleobiology 41, 342–52.CrossRefGoogle Scholar
Kolata, D. R. 1973. Scalenocystites strimplei, a new Middle Ordovician belemnocystitid solute from Minnesota. Journal of Paleontology 47, 969–74.Google Scholar
Kolata, D. R., Strimple, H. L. & Levorson, C. O. 1977. Revision of the Ordovician carpoid family Iowacystidae. Palaeontology 20, 529–57.Google Scholar
Kouchinsky, A., Bengtson, S., Runnegar, B., Skovsted, C., Steiner, M. & Vendrasco, M. 2012. Chronology of early Cambrian biomineralization. Geological Magazine 149, 221–51.CrossRefGoogle Scholar
Lefebvre, B. 2003. Functional morphology of stylophoran echinoderms. Palaeontology 46, 511–55.CrossRefGoogle Scholar
Lefebvre, B. 2007. Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 156–99.CrossRefGoogle Scholar
Lefebvre, B., Allaire, N., Guensburg, T. E., Hunter, A. W., Kouraïss, K., Martin, E., Nardin, E., Noailles, F., Pittet, B., Sumrall, C. D. & Zamora, S. 2016. Palaeoecological aspects of the diversification of echinoderms in the Lower Ordovician of central Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 97121.CrossRefGoogle Scholar
Lefebvre, B., Derstler, K. & Sumrall, C. D. 2012. A reinterpretation of the solutan Plasiacystis mobilis (Echinodermata) from the Middle Ordovician of Bohemia. In Echinoderm Research 2010. Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010 (eds Kroh, A. & Reich, M.), pp. 287306. Zoosymposia no. 7.Google Scholar
Lefebvre, B. & Fatka, O. 2003. Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 7397.CrossRefGoogle Scholar
Lefebvre, B., Nardin, E. & Fatka, O. 2015. Body wall homologies in basal blastozoans. In Progress in Echinoderm Palaeobiology (eds Zamora, S. & Rabano, I.), pp. 8793. Cuadernos del Museo Geominero no. 19.Google Scholar
Lerosey-Aubril, R. 2015. Notchia weugi gen. et sp. nov., a new short-headed arthropod from the Weeks Formation Konservat-Lagerstätte (Cambrian; Utah). Geological Magazine 152, 351–7.CrossRefGoogle Scholar
Lerosey-Aubril, R., Hegna, T. A., Kier, C., Bonino, E., Habersetzer, J. & Carré, M. 2012. Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS ONE 7 (3), e32934.CrossRefGoogle ScholarPubMed
Lerosey-Aubril, R., Hegna, T. A., Babcock, L. E., Bonino, E. & Kier, C. 2014. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new occurrences of anomalocaridids in the Cambrian of Utah, USA. Bulletin of Geosciences 89, 269–82.CrossRefGoogle Scholar
Lerosey-Aubril, R., Ortega-Hernández, J., Kier, C. & Bonino, E. 2013. Occurrence of the Ordovician-type aglaspidid Tremaglaspis in the Cambrian Weeks Formation (Utah, USA). Geological Magazine 150, 945–51.CrossRefGoogle Scholar
Martin, E., Lefebvre, B. & Vaucher, R. 2015. Taphonomy of a stylophoran-dominated assemblage in the Lower Ordovician of Zagora area (central Anti-Atlas, Morocco). In Progress in Echinoderm Palaeobiology (eds Zamora, S. & Rabano, I.), pp. 95100. Cuadernos del Museo Geominero no. 19.Google Scholar
Miller, J. F., Evans, K. R. & Dattilo, B. F. 2012. The Great American Carbonate Bank in the miogeocline of western central Utah: tectonic influences on sedimentation. In The Great American Carbonate Bank: The Geology and Economic Resources of the Cambro-Ordovician Sauk Sequence of Laurentia (eds Derby, J. R., Fritz, R. D., Longacre, S. A., Morgan, W. A. & Sternbach, C. A.), pp. 769854. American Association of Petroleum Geologists Memoir no. 98.Google Scholar
Mooi, R. & David, B. 1998. Evolution within a bizarre phylum: homologies of the first echinoderms. American Zoologist 38, 965–74.CrossRefGoogle Scholar
Nardin, E., Lefebvre, B., David, B. & Mooi, R. 2009. La radiation des échinodermes au Paléozoïque inférieur: l'exemple des blastozoaires. Comptes Rendus Palevol 8, 179–88.CrossRefGoogle Scholar
Noailles, F. 2016. Life on the seafloor: adaptations and strategies in Stylophora (Echinodermata). Lethaia 49, 365–78.CrossRefGoogle Scholar
Noailles, F., Lefebvre, B. & Kašička, L. 2014. A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938. Bulletin of Geosciences 89, 451–76.CrossRefGoogle Scholar
Ortega-Hernández, J., Lerosey-Aubril, R., Kier, C. & Bonino, E. 2015. A rare non-trilobite artiopodan from the Guzhangian (Cambrian Series 3) Weeks Formation Konservat-Lagerstätte in Utah, USA. Palaeontology 58, 265–76.CrossRefGoogle Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora. In Echinoderm Phylogeny and Evolutionary Biology (eds Paul, C. R. C. & Smith, A. B.), pp. 347–61. Oxford: Clarendon Press.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: non Calcichordata. Paleontological Society Papers 3, 225–48.CrossRefGoogle Scholar
Parsley, R. L. & Caster, K. E. 1965. North American Soluta (Carpoidea, Echinodermata). Bulletins of American Paleontology 49, 109–74.Google Scholar
Parsley, R. L. & Prokop, R. J. 2004. Functional morphology and palaeocology of some sessile Middle Cambrian echinoderms from marginal Gondwana basins in Bohemia. Bulletin of Geosciences 79, 147–56.Google Scholar
Parsley, R. L., Rozhnov, S. V. & Sumrall, C. D. 2012. Morphological and systematic revision of the solute Maennilia estonica (Homoiostelea, Echinodermata) from the Upper Ordovician of Estonia. Journal of Paleontology 86, 462–69.CrossRefGoogle Scholar
Parsley, R. L. & Sumrall, C. D. 2007. New recumbent echinoderm genera from the Bois d'Arc Formation: Lower Devonian (Lochkovian) of Coal County, Oklahoma. Journal of Paleontology 81, 1486–93.CrossRefGoogle Scholar
Paul, C. R. C. & Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews 59, 443–81.CrossRefGoogle Scholar
Peterson, K. J., Cotton, J. A., Gehling, J. G. & Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society B 363, 1435–43.CrossRefGoogle ScholarPubMed
Prokop, R. V. & Petr, V. 2003. Plasiacystis mobilis, gen. et sp. n., a strange “carpoid” (Echinodermata, ?Homoiostelea: Soluta) in the Bohemian Ordovician (Czech Republic). Sborník Národního muzea (B: Přírodní vědy) [= Acta Musei Nationalis Pragae (B: Natural History)] 59, 151–62.Google Scholar
Rahman, I. A. & Lintz, H. 2012. Dehmicystis globulus, an enigmatic solute (Echinodermata) from the Lower Devonian Hunsrück Slate, Germany. Paläontologische Zeitschrift 86, 5970.CrossRefGoogle Scholar
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform: the Middle Cambrian House Range embayment. Bulletin of the Geological Society of America 97, 1054–69.2.0.CO;2>CrossRefGoogle Scholar
Robison, R. A. 1965. Middle Cambrian eocrinoids from western North America. Journal of Paleontology 38, 355–64.Google Scholar
Robison, R. A. & Babcock, L. E. 2011. Systematics, paleobiology, and taphonomy of some exceptionally preserved trilobites from Cambrian Lagerstätten of Utah. University of Kansas Paleontological Contributions 5, 147.Google Scholar
Robison, R. A., Babcock, L. E. & Gunther, V. G. 2015. Exceptional Cambrian fossils from Utah: A window into the Age of Trilobites. Utah Geological Survey Miscellaneous Publication 15-1, 97 pp.Google Scholar
Rozhnov, S. V. & Jefferies, R. P. S. 1996. A new stem-chordate solute from the Middle Ordovician of Estonia. Geobios 29, 91109.CrossRefGoogle Scholar
Schlottke, M. T. & Dornbos, S. Q. 2007. Paleoecology of the middle Cambrian eocrinoid echinoderm Gogia spiralis: possible changes in substrate adaptations through ontogeny. Geological Society of America, Abstracts with Programs 39, 333.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in Early Palaeozoic echinoderms. Palaeontology 31, 799828.Google Scholar
Smith, A. B. 2005. The pre-radial history of echinoderms. Geological Journal 40, 255–80.CrossRefGoogle Scholar
Smith, A. B. 2008. Deuterostomes in a twist: the origins of a radical new body plan. Evolution & Development 10, 493503.CrossRefGoogle Scholar
Smith, A. B. & Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum 28, 715–78.Google Scholar
Smith, A. B., Zamora, S. & Alvaro, J. J. 2013. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications 4 (1385), 17.CrossRefGoogle ScholarPubMed
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology Special Publication, 283 pp.Google Scholar
Sprinkle, J. 1985. New edrioasteroid from the Middle Cambrian of western Utah. The University of Kansas Paleontological Contributions 116, 14.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H. & Signor, P. W.), pp. 375–98. New York: Plenum Press.CrossRefGoogle Scholar
Sprinkle, J. & Guensburg, T. E. 1993. Appendix D – Echinoderm biostratigraphy. In Paleozoic Biochronology of the Great Basin, Western United States (ed. Taylor, M. E.), pp. 61–3. US Geological Survey, Open File Report 93-598.Google Scholar
Sprinkle, J. & Guensburg, T. E. 1997. Early radiation of echinoderms. Paleontological Society Papers 3, 205–24.CrossRefGoogle Scholar
Sprinkle, J. & Guensburg, T. E. 2004. Crinozoan, blastozoan, echinozoan, asterozoan, and homalozoan echinoderms. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 266–80. New York: Columbia University Press.CrossRefGoogle Scholar
Sumrall, C. D., Sprinkle, J. & Guensburg, T. E. 1997. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology 71, 1091–109.CrossRefGoogle Scholar
Sumrall, C. D., Sprinkle, J., Guensburg, T. E. & Dattilo, B. F. 2012. Early Ordovician mitrates and a possible solute (Echinodermata) from the western United States. Journal of Paleontology 86, 595604.CrossRefGoogle Scholar
Thoral, M. 1935. Contribution à l'étude paléontologique de l'Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. Montpellier: Imprimerie de la Charité, 362 pp.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology 37, 1133–42.Google Scholar
Ubaghs, G. 1970. Les échinodermes carpoïdes de l'Ordovicien inférieur de la Montagne Noire (France). Paris: Editions du CNRS, 112 pp.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of Earth and Planetary Sciences 3, 7998.CrossRefGoogle Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire (France, méridionale). Geobios 31, 809–29.CrossRefGoogle Scholar
Ubaghs, G. & Robison, R. A. 1985. A new homoiostelean and a new eocrinoid from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions 115, 124.Google Scholar
Ubaghs, G. & Robison, R. A. 1988. Homalozoan echinoderms of the Wheeler Formation (Middle Cambrian) of western Utah. The University of Kansas Paleontological Contributions 120, 117.Google Scholar
Vizcaïno, D. & Lefebvre, B. 1999. Les échinodermes du Paléozoïque inférieur de Montagne Noire: biostratigraphie et paléodiversité. Geobios 32, 353–64.CrossRefGoogle Scholar
Zamora, S., Lefebvre, B., Alvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J. P., Nardin, E., Parsley, R. L., Rozhnov, S. V., Sprinkle, J., Sumrall, C. D., Vizcaïno, D. & Smith, A. B. 2013a. Cambrian echinoderm diversity and palaeobiogeography. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), pp. 157–71. Geological Society of London, Memoir no. 38.Google Scholar
Zamora, S. & Rahman, I. A. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57, 1105–19.CrossRefGoogle Scholar
Zamora, S. & Rahman, I. A. 2015. Palaeobiological implications of a mass-mortality assemblage of cinctans (Echinodermata) from the Cambrian of Spain. In Progress in Echinoderm Palaeobiology (eds Zamora, S. & Rabano, I.), pp. 203–6. Cuadernos del Museo Geominero no. 19.Google Scholar
Zamora, S., Zhu, X. & Lefebvre, B. 2013b. A new Furongian (Cambrian) echinoderm-Lagerstätte from the Sandu Formation (South China). Cahiers de Biologie Marine 54, 565–9.Google Scholar
Zhu, X., Peng, S., Zamora, S., Lefebvre, B. & Chen, G. 2016. Furongian (upper Cambrian) Guole Konservat-Lagerstätte from South China. Acta Geologica Sinica 90, 801–8.Google Scholar