Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T13:03:05.673Z Has data issue: false hasContentIssue false

A LA-ICP-MS analysis of rare earth elements on phosphatic grains of the Ediacaran Doushantuo phosphorite at Weng'an, South China: implication for depositional conditions and diagenetic processes

Published online by Cambridge University Press:  03 April 2017

BI ZHU
Affiliation:
Institute of Isotope Hydrology, School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, PR China
SHAO-YONG JIANG*
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Resources, Collaborative Innovation Center for Exploration of Strategic Mineral Resources, China University of Geosciences, Wuhan 430074, PR China State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, PR China
*
§Author for correspondence: shyjiang@cug.edu.cn

Abstract

The Ediacaran Doushantuo Formation at Weng'an, South China hosts well-preserved phosphatized microfossils known as the Weng'an biota. A laser ablation ICP-MS analysis of rare earth element (REE) characteristics of the fossil-bearing black phosphorite unit of the Doushantuo Formation at Weng'an was conducted, with the aim of unravelling the depositional conditions and diagenetic processes during formation of the phosphorites. Spherical phosphatized microfossils and phosphatic clasts were analysed, and the REE data display middle REE (MREE) -enriched shale-normalized REE patterns. The spherical phosphatized microfossils show an increase in total REE contents (∑REE) from core to rim. Negative correlations between ∑REE and the extent of MREE enrichment over the other REE (indicated by LaN/SmN, YbN/SmN) are observed for analysed spots within individual phosphatic grains, which may be due to complex diagenetic history of the phosphatic grains, with fluctuations in REE sources and chemical parameters in a high-energy shallow-water environment being additional factors. The LaN/YbN and LaN/SmN characteristics of the phosphatic grains suggest they were mostly influenced by early diagenetic alteration rather than late extensive recrystallization. The negative Ce anomalies in the samples suggest they formed under oxic-bottom-water conditions. Positive Eu anomalies are present in all samples, and are likely to reflect involvement of hydrothermal fluids rather than changes in redox conditions of porewater. Overall this study has major implications for phosphorites as important archives for the study of geochemical proxies, the Ediacaran period and also evolutionary changes.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibert, C. 2016. Rare earth elements in Hamersley BIF minerals. Geochimica et Cosmochimica Acta 184, 311–28.CrossRefGoogle Scholar
Auer, G., Hauzenberger, C. A., Reuter, M. & Piller, W. E. 2016. Orbitally paced phosphogenesis in Mediterranean shallow marine carbonates during the middle Miocene Monterey event. Geochemistry, Geophysics, Geosystems 17 (4), 1492–510.CrossRefGoogle ScholarPubMed
Bailey, J. V., Corsetti, F. A., Greene, S. E., Crosby, C. H., Liu, P. & Orphan, V. J. 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Geobiology 11 (5), 397405.CrossRefGoogle ScholarPubMed
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E. & Corsetti, F. A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445 (7124), 198201.CrossRefGoogle ScholarPubMed
Barfod, G. H., Albarede, F., Knoll, A. H., Xiao, S. H., Telouk, P., Frei, R. & Baker, J. 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters 201 (1), 203–12.CrossRefGoogle Scholar
Bau, M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology 93 (3–4), 219–30.CrossRefGoogle Scholar
Bau, M., Balan, S., Schmidt, K. & Koschinsky, A. 2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth & Planetary Science Letters 299 (3–4), 310–16.CrossRefGoogle Scholar
Bau, M. & Dulski, P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79 (1), 3755.CrossRefGoogle Scholar
Brookins, D. G. 1989. Aqueous geochemistry of rare earth elements. In Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, B. R. and Mckay, G. A.), 201–25. Mineralogical Society of America, Virginina, Reviews in Mineralogy 21.CrossRefGoogle Scholar
Byrne, R. H. & Kim, K. H. 1990. Rare-earth element scavenging in Seawater. Geochimica et Cosmochimica Acta 54 (10), 2645–56.CrossRefGoogle Scholar
Byrne, R. H. & Sholkovitz, E. R. 1996. Chapter 158. Marine chemistry and geochemistry of the lanthanides. In Handbook on the Physics & Chemistry of Rare Earths (eds Gschneidner, K.A. & Eyring, L.), pp. 497593. Amsterdam: Elsevier.Google Scholar
Chen, D. F., Dong, W. Q., Qi, L., Chen, G. Q. & Chen, X. P. 2003. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology 201 (1–2), 103–18.CrossRefGoogle Scholar
Chen, D. F., Dong, W. Q., Zhu, B. Q. & Chen, X. P. 2004. Pb–Pb ages of Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glaciation events. Precambrian Research 132 (1–2), 123–32.CrossRefGoogle Scholar
Chen, J. Y., Bottjer, D. J., Davidson, E. H., Dornbos, S. Q., Gao, X., Yang, Y. H., Li, C. W., Li, G., Wang, X. Q., Xian, D. C., WU, H. J., Hwu, Y. K. & Tafforeau, P. 2006. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science 312 (5780), 1644–6.CrossRefGoogle ScholarPubMed
Chen, Y. Q., Jiang, S. Y., Ling, H. F. & Yang, J. H. 2009. Pb–Pb dating of black shales from the Lower Cambrian and Neoproterozoic strata, South China. Chemie der Erde - Geochemistry 69 (2), 183–89.CrossRefGoogle Scholar
Condon, D., Zhu, M. Y., Bowring, S., Wang, W., Yang, A. H. & Jin, Y. G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308 (5718), 9598.CrossRefGoogle ScholarPubMed
Elderfield, H. & Pagett, R. 1986. Rare earth elements in ichthyoliths: Variations with redox conditions and depositional environment. Science of the Total Environment 49, 175–97.CrossRefGoogle Scholar
Elderfield, H. & Sholkovitz, E. R. 1987. Rare earth elements in the pore waters of reducing nearshore sediments. Earth & Planetary Science Letters 82 (3–4), 280–88.CrossRefGoogle Scholar
Fan, H., Wen, H. & Zhu, X. 2016. Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China. Journal of Earth Science 27 (2), 282–96.CrossRefGoogle Scholar
Follmi, K. B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews 40 (1–2), 55124.CrossRefGoogle Scholar
German, C. R. & Elderfield, H. 1990. Application of the Ce Anomaly as a Paleoredox indicator: the ground rules. Paleoceanography 5 (5), 823–33.CrossRefGoogle Scholar
German, C. R., Holliday, B. P. & Elderfield, H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta 55 (12), 3553–58.CrossRefGoogle Scholar
Guo, Q. J., Yang, W. D., Liu, C. Q., Strauss, H. & Wang, X. Z. 2003. Sedimentary geochemistry research on the radiation of Weng'an Biota and the formation of the phosphorite ore deposit, Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry 22 (3), 7 (in Chinese).Google Scholar
Haley, B. A., Klinkhammer, G. P. & McManus, J. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68 (6), 1265–79.CrossRefGoogle Scholar
Heggie, D. T., Skyring, G. W., Obrien, G. W., Reimers, C., Herczeg, A., Moriarty, D. J. W., Burnett, W. C. & Milnes, A. R. 1990. Organic-carbon cycling and modern phosphorite formation on the east Australian continental margin - an overview. Phosphorite Research and Development 52, 87117.Google Scholar
Jiang, G., Shi, X., Zhang, S., Wang, Y. & Xiao, S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research 19 (4), 831–49.CrossRefGoogle Scholar
Jiang, S. Y., Zhao, H. X., Chen, Y. Q., Yang, T., Yang, J. H. & Ling, H. F. 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology 244 (3–4), 584604.CrossRefGoogle Scholar
Joosu, L., Lepland, A., Kirsimäe, K., Romashkin, A. E., Roberts, N. M. W., Martin, A. P. & Črne, A. E. 2015. The REE-composition and petrography of apatite in 2 Ga Zaonega Formation, Russia: The environmental setting for phosphogenesis. Chemical Geology 395, 88107.CrossRefGoogle Scholar
Kidder, D. L., Krishnaswamy, R. & Mapes, R. H. 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chemical Geology 198 (3–4), 335–53.CrossRefGoogle Scholar
Lawrence, M. G., Greig, A., Collerson, K. D. & Kamber, B. S. 2006. Rare earth element and yttrium variability in southeast Queensland waterways. Aquatic Geochemistry 12 (1), 3972.CrossRefGoogle Scholar
Li, C., Zhu, M. & Chu, X. 2016. Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China. Journal of Earth Science 27 (2), 167–69.CrossRefGoogle Scholar
Ling, H. F., Chen, X., Li, D., Wang, D., Shields-Zhou, G. A. & Zhu, M. 2013. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research 225, 110–27.CrossRefGoogle Scholar
Liu, P. J., Yin, C. Y., Gao, L. Z., Tang, F. & Chen, S. M. 2009. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chinese Science Bulletin 54 (6), 1058–64.CrossRefGoogle Scholar
Liu, X. W., Byrne, R. H. & Schijf, J. 1997. Comparative coprecipitation of phosphate and arsenate with yttrium and the rare earths: The influence of solution complexation. Journal of Solution Chemistry 26 (12), 1187–98.CrossRefGoogle Scholar
McArthur, J. M. & Walsh, J. N. 1984. Rare-earth geochemistry of phosphorites. Chemical Geology 47 (3–4), 191220.CrossRefGoogle Scholar
McLennan, S. M. 1989. Rare-earth elements in eedimentary rocks - Influence of provenance and sedimentary processes. Geochemistry and Mineralogy of Rare Earth Elements 21, 169200.CrossRefGoogle Scholar
Michard, A., Albarede, F., Michard, G., Minster, J. & Charlou, J. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature 303 (5920), 795–97.CrossRefGoogle Scholar
Moffett, J. W. 1990. Microbially mediated cerium oxidation in sea water. Nature 345, 421–23.CrossRefGoogle Scholar
Moffett, J. W. 1994. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochimica et Cosmochimica Acta 58 (2), 695703.CrossRefGoogle Scholar
Nelson, G. J., Pufahl, P. K. & Hiatt, E. E. 2010. Paleoceanographic constraints on Precambrian phosphorite accumulation, Baraga Group, Michigan, USA. Sedimentary Geology 226 (1–4), 921.CrossRefGoogle Scholar
Ogihara, S. 1999. Geochemical characteristics of phosphorite and carbonate nodules from the Miocene Funakawa Formation, western margin of the Yokote Basin, northeast Japan. Sedimentary Geology 125 (1–2), 6982.CrossRefGoogle Scholar
Ohta, A. & Kawabe, I. 2001. REE(III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2 . Geochimica et Cosmochimica Acta 65 (5), 695703.CrossRefGoogle Scholar
Papineau, D. 2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology 10 (2), 165–81.CrossRefGoogle ScholarPubMed
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26 (12), 2508–18.CrossRefGoogle Scholar
Pourret, O., Davranche, M., Gruau, G. & Dia, A. 2007a. Competition between humic acid and carbonates for rare earth elements complexation. Journal of Colloid Interface Science 305 (1), 2531.CrossRefGoogle ScholarPubMed
Pourret, O., Davranche, M., Gruau, G. & Dia, A. 2007b. Rare earth elements complexation with humic acid. Chemical Geology 243 (1–2), 128–41.CrossRefGoogle Scholar
Qiao, W., Lang, X., Peng, Y., Jiang, K., Chen, W., Huang, K. & Shen, B. 2016. Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform. Journal of Earth Science 27 (2), 170179.CrossRefGoogle Scholar
Reynard, B., Lécuyer, C. & Grandjean, P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology 155 (3–4), 233–41.CrossRefGoogle Scholar
Schacht, U., Wallmann, K. & Kutterolf, S. 2010. The influence of volcanic ash alteration on the REE composition of marine pore waters. Journal of Geochemical Exploration 106 (1–3), 176–87.CrossRefGoogle Scholar
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., Carvalho, L. M. D. & Seifert, R. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chemical Geology 242 (1–2), 121.CrossRefGoogle Scholar
Schulz, H. N. & Schulz, H. D. 2005. Large sulfur bacteria and the formation of phosphorite. Science 307 (5708), 416–18.CrossRefGoogle ScholarPubMed
Shields, G., Kimura, H., Yang, J. & Gammon, P. 2004. Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: new francolite-bound sulphate δ34S data and a critical appraisal of the existing record. Chemical Geology 204 (1–2), 163–82.CrossRefGoogle Scholar
Shields, G. & Stille, P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology 175 (1–2), 2948.CrossRefGoogle Scholar
Sholkovitz, E. R., Piepgras, D. J. & Jacobsen, S. B. 1989. The pore water chemistry of rare earth elements in Buzzards Bay sediments. Geochimica et Cosmochimica Acta 53 (11), 2847–56.CrossRefGoogle Scholar
Soyol-Erdene, T.-O. & Huh, Y. 2013. Rare earth element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323). Chemical Geology 358, 7589.CrossRefGoogle Scholar
Stalder, M. & Rozendaal, A. 2004. Apatite nodules as an indicator of depositional environment and ore genesis for the Mesoproterozoic Broken Hill-type Gamsberg Zn–Pb deposit, Namaqua Province, South Africa. Mineralium Deposita 39 (2), 189203.CrossRefGoogle Scholar
Surya Prakash, L., Ray, D., Paropkari, A. L., Mudholkar, A. V., Satyanarayanan, M., Sreenivas, B., Chandrasekharam, D., Kota, D., Kamesh Raju, K. A., Kaisary, S., Balaram, V. & Gurav, T. 2012. Distribution of REEs and yttrium among major geochemical phases of marine Fe–Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits. Chemical Geology 312–3, 127–37.CrossRefGoogle Scholar
Tachikawa, K., Jeandel, C., Vangriesheim, A. & Dupré, B. 1999. Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site). Deep Sea Research Part I Oceanographic Research Papers 46 (5), 733–55.CrossRefGoogle Scholar
Tanaka, K., Tani, Y., Takahashi, Y., Tanimizu, M., Suzuki, Y., Kozai, N. & Ohnuki, T. 2010. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21–2. Geochimica et Cosmochimica Acta 74 (19), 5463–77.CrossRefGoogle Scholar
Taylor, H. 2001. Inductively Coupled Plasma-Mass Spectrometry Practices and Techniques. San Diego: Academic Press, 80 pp.Google Scholar
Vernhet, E. & Reijmer, J. J. G. 2010. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China). Sedimentary Geology 225 (3–4), 99115.CrossRefGoogle Scholar
Xiao, S. & Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology 74 (5), 767–88.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S., Knoll, A. H., Yuan, X. & Pueschel, C. M. 2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany 91 (2), 214–27.CrossRefGoogle ScholarPubMed
Xiao, S., Muscente, A., Chen, L., Zhou, C., Schiffbauer, J. D., Wood, A. D., Polys, N. F. & Yuan, X. 2014. The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes. National Science Review 1 (4), 498520.CrossRefGoogle Scholar
Xiao, S., Zhang, Y. & Knoll, A. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391 (6667), 553–58.CrossRefGoogle Scholar
Xin, H., Jiang, S. Y., Yang, J. H., Wu, H. P. & Pi, D. H. 2015. Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from western Hubei Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 712724.CrossRefGoogle Scholar
Xin, H., Jiang, S. Y., Yang, J. H., Wu, H. P. & Pi, D. H. 2016. Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. Journal of Earth Science 27 (2), 204–10.CrossRefGoogle Scholar
Yin, C. Y., Bengtson, S. & Yue, Z. 2004. Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica 49 (1), 112.Google Scholar
Yin, C. & Gao, L. 2000. The microfossils in phosphate deposit in Doushantuo stage, Sinian System, Weng'an, Guizhou Province. Chinese Science Bulletin 45 (3), 279–84.CrossRefGoogle Scholar
Yin, Z., Zhu, M., Davidson, E. H., Bottjer, D. J., Zhao, F. & Tafforeau, P. 2015. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences 112 (12), E1453–60.CrossRefGoogle ScholarPubMed
Zhang, Y., Yin, L. M., Xiao, S. H. & Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, south China. Journal of Paleontology 72 (4), 152.CrossRefGoogle Scholar
Zhou, C. & Xiao, S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology 237 (1–2), 89108.CrossRefGoogle Scholar
Zhou, C. M., Xie, G. W., McFadden, K., Xiao, S. H. & Yuan, X. L. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance. Geological Journal 42 (3–4), 229–62.Google Scholar
Zhu, B., Jiang, S.Y., Yang, J.H., Pi, D., Ling, H.F. & Chen, Y.Q. 2014. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 132–43.CrossRefGoogle Scholar
Zhu, M., Zhang, J. & Yang, A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254 (1–2), 761.CrossRefGoogle Scholar
Zhu, M. Y., Zhang, J. M., Steiner, M., Yang, A. H., Li, G. X. & Erdtmann, B. D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach. Progress in Natural Science 13 (12), 951–60.CrossRefGoogle Scholar
Supplementary material: Image

Zhu and Jiang supplementary material

Fig. S1

Download Zhu and Jiang supplementary material(Image)
Image 69 MB