Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-03T00:24:05.217Z Has data issue: false hasContentIssue false

Gabbro, plagiogranite and associated dykes in the supra-subduction zone Evros Ophiolites, NE Greece

Published online by Cambridge University Press:  30 July 2008

NIKOLAY BONEV*
Affiliation:
Department of Geology and Paleontology, Sofia University ‘St. Kliment Ohridski’, BG-1504 Sofia, Bulgaria
GÉRARD STAMPFLI
Affiliation:
Institute of Geology and Paleontology, University of Lausanne, Anthropole, CH-1015 Lausanne, Switzerland
*
*Author for correspondence: niki@gea.uni-sofia.bg

Abstract

The incomplete Evros ophiolites in NE Greece form a NE–SW-oriented discontinuous belt in the Alpine orogen of the north Aegean. Field data, petrology and geochemistry are presented here for the intrusive section and associated mafic dykes of these ophiolites. Bodies of high-level isotropic gabbro and plagiogranite in the ophiolite suite are cross-cut by NE–SW-trending boninitic and tholeiitic–boninitic affinity dykes, respectively. The dykes fill tensile fractures or faults, which implies dyke emplacement in an extensional tectonic regime. The tholeiitic–transitional boninitic gabbro is REE- and HFS-depleted relative to N-MORB, indicating derivation from melting of a refractory mantle peridotite source. Associated boninitic dykes are slightly LREE-enriched, showing mineral and whole-rock geochemistry similar to the gabbro. The plagiogranite is a strongly REE-enriched high-silica trondhjemite, with textures and composition typical for an oceanic crust differentiate. Plagiogranite-hosted tholeiitic and transitional boninitic dykes are variably REE-enriched. Geochemical modelling indicates origin of the plagiogranite by up to 75 % fractional crystallization of basaltic magma similar to that producing the associated tholeiitic dykes. All mafic rocks have high LILE/HFSE ratios and negative Ta–Nb–Ti and Ce anomalies, typical for subduction zone-related settings. The mafic rocks show a similar trace-element character to the mafic lavas of an extrusive section in Bulgaria, suggesting they both form genetically related intrusive and extrusive suites of the Evros ophiolites. The field occurrence, the structural context, the petrology and geochemical signature of the studied magmatic assemblage provide evidence for its origin in a proto-arc (fore-arc) tectonic setting, thus tracing the early stages of the tectono-magmatic evolution of Jurassic arc-marginal basin system that has generated the supra-subduction type Evros ophiolites.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldiss, D. T. 1981. Plagiogranites from the ocean crust and ophiolites. Nature 289, 577–8.CrossRefGoogle Scholar
Anders, B., Reischmann, T., Poller, U. & Kostopoulos, D. 2005. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides. Journal of the Geological Society, London 162, 857–70.CrossRefGoogle Scholar
Anderson, J. L. & Smith, D. R. 1995. The effects of temperature and f O2 on the Al-in-hornblende barometer. American Mineralogist 80, 549–59.CrossRefGoogle Scholar
Arculus, R. J. & Wills, K. J. A. 1980. The petrology of plutonic blocks and inclusions from Lesser Antilles island arc. Journal of Petrology 21, 743–99.CrossRefGoogle Scholar
Barker, F. & Arth, J. G. 1976. Generation of trondhjemitic–tonalitic liquids and Archean bimodal trondhjemite–basalt suites. Geology 4, 596600.2.0.CO;2>CrossRefGoogle Scholar
Beard, J. S. 1986. Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14, 848–51.2.0.CO;2>CrossRefGoogle Scholar
Beccaluva, L., Coltorti, M., Giunta, G. & Siena, F. 2004. Tethyan v. Cordilleran ophiolites: reappraisal of distinctive tectono-magmatic features of supra-subduction complexes in relation to the subduction mode. Tectonophysics 393, 163–74.CrossRefGoogle Scholar
Beccaluva, L., Macciotta, G., Piccardo, G. B. & Zeda, O. 1989. Clinopyroxene compositions of ophiolitic basalts as petrogenetic indicator. Chemical Geology 77, 165–82.CrossRefGoogle Scholar
Biggazzi, G., Del Moro, A., Innocenti, F., Kyriakopoulos, K., Manetti, P., Papadopoulos, P., Norelliti, P. & Magganas, A. 1989. The magmatic intrusive complex of Petrota, west Thrace: age and geodynamic significance. Geologica Rhodopica 1, 290–7.Google Scholar
Bloomer, S. H., Taylor, B., MacLeod, C. J., Stern, R. J., Fryer, P., Hawkins, J. W. & Johnson, L. 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In Active Margins and Marginal Basins of the Western Pacific (eds Taylor, B. & Natland, J.), pp. 130. AGU Geophysical Monograph no. 88, Washington, D.C.Google Scholar
Bonev, N. 2005. Foraminifers from the exotic Late Permian limestone pebbles in the Mesozoic low-grade sequence of the eastern Rhodope, Bulgaria: paleogeographic and paleotectonic consequences. Neues Jahrbuch für Geologie und Paläontologie Monatschefte 7, 385403.CrossRefGoogle Scholar
Bonev, N. 2006. Cenozoic tectonic evolution of the eastern Rhodope Massif (Bulgaria): Basement structure and kinematics of syn- to postcollisional extensional deformation. In Postcollisional Tectonics and Magmatism in the Mediterranean region and Asia (eds Dilek, Y. & Pavlides, S.), pp. 211–35. Geological Society of America, Special Paper no. 409.Google Scholar
Bonev, N., Burg, J.-P. & Ivanov, Z. 2006. Structural evolution of an extensional gneiss dome – the Kesebir–Kardamos dome, E. Rhodope, Bulgaria–Greece. International Journal of Earth Sciences 95, 318–40.CrossRefGoogle Scholar
Bonev, N., Marchev, P. & Singer, B. 2006. 40Ar/39Ar geochronology constraints on the Middle Tertiary basement extensional exhumation, and its relation to ore-forming and magmatic processes in the eastern Rhodope (Bulgaria). Geodinamica Acta 19, 267–82.CrossRefGoogle Scholar
Bonev, N. G. & Stampfli, G. M. 2003. New structural and petrologic data on Mesozoic schists in the Rhodope (Bulgaria): geodynamic implications. Comptes Rendus Geoscience 335, 691–9.CrossRefGoogle Scholar
Bonev, N. & Stampfli, G. 2005. Compositional diversity of the Evros ophiolite, Thrace, northeastern Greece: field occurrences, preliminary petrologic and geochemical data on plutonic sequence and tectonic implications. Proceedings of the Jubilee International Conference 80th Year Bulgarian Geological Society (eds Yanev, Y. & Nedialkov, R.), pp. 31–4. Sofia University Press.Google Scholar
Bonev, N. & Stampfli, G. 2008. Petrology, geochemistry and tectonic implications of Jurassic island arc magmatism as revealed by mafic volcanic rocks in the Mesozoic low-grade sequence of the eastern Rhodope, Bulgaria. Lithos 100, 210–33.CrossRefGoogle Scholar
Bortolotti, V., Marroni, M., Pandolfi, L., Principi, G. & Saccani, E. 2002. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. Journal of Geology 110, 561–76.CrossRefGoogle Scholar
Bortolotti, V. & Principi, G. 2005. Tethyan ophiolites and Pangea break-up. The Island Arc 14, 442–70.CrossRefGoogle Scholar
Boyanov, I. & Bodurov, K. 1979. Triassic conodonts in carbonate breccia within the low-grade metamorphic rocks of the East Rhodopes. Geologica Balcanica 9, 97104.Google Scholar
Boyanov, I. & Goranov, A. 2001. Late Alpine (Palaeogene) superimposed depressions in parts of Southeast Bulgaria. Geologica Balcanica 31, 336.CrossRefGoogle Scholar
Boyanov, I. & Lipman, P. 1973. On the Lower Cretaceous age of the low-crystalline metamorphic complex in the East Rhodopes. Comptes Rendus de l'Académie bulgare des Sciences 26, 1225–6.Google Scholar
Boyanov, I. & Russeva, M. 1989. Lithostratigraphy and tectonic position of the Mesozoic rocks from the East Rhodopes. Geologica Rhodopica 1, 2233.Google Scholar
Boyanov, I., Russeva, K. M. & Dimitrova, E. 1982. First find of Upper Cretaceous foraminifers in East Rhodopes. Geologica Balcanica 4, 20.Google Scholar
Boyanov, I., Russeva, M., Toprakcieva, V. & Dimitrova, E. 1990. Lithostratigraphy of the Mesozoic rocks from the Eastern Rhodopes. Geologica Balcanica 20, 328.CrossRefGoogle Scholar
Burg, J.-P., Ricou, L.-E., Ivanov, Z., Dimov, D. & Klain, L. 1996. Crustal-scale thrust complex in the Rhodope Massif. Structures and kinematics. Terra Nova 8, 615.CrossRefGoogle Scholar
Cameron, W. E., Nisbet, E. G. & Dietrich, V. J. 1979. Boninites, komatiites and ophiolitic basalts. Nature 280, 550–3.CrossRefGoogle Scholar
Carrigan, C., Mukasa, S., Haydoutov, I. & Kolcheva, K. 2003. Ion microprobe U–Pb zircon ages of pre-Alpine rocks in the Balkan, Sredna Gora and Rhodope terranes of Bulgaria: constraints on Neoproterozoic and Variscan evolution. Journal of Czech Geological Society 48, 32–3.Google Scholar
Coleman, R. G. & Donato, M. M. 1979. Oceanic plagiogranite revisited. In Trondhjemites, dacites, and related rocks (ed. Barker, F.), pp. 149–68. Amsterdam: Elsevier.CrossRefGoogle Scholar
Coleman, R. G. & Peterman, Z. E. 1975. Oceanic plagiogrante. Journal of Geophysical Research 80, 10991108.CrossRefGoogle Scholar
Crawford, A. J., Falloon, T. J. & Green, D. H. 1989. Classification, petrogenesis and tectonic setting of boninites. In Boninites and Related Rocks (ed. Crawford, A. J.), pp. 149. London: Unwin Hyman.Google Scholar
De Bari, S. M. & Coleman, R. G. 1989. Examination of the deep levels of an island arc: evidence from the Tonisia ultramafic–mafic assemblage, Tonisia, Alaska. Journal of Geophysical Research 94, 4373–91.CrossRefGoogle Scholar
Del Moro, A., Innocenti, F., Kyriakopoulos, C., Manetti, P. & Papadopoulos, P. 1988. Tertiary granitoids from Thrace (northern Greece): Sr isotopic and petrochemical data. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 159, 113–35.Google Scholar
Dilek, Y., Furnes, H. & Shallo, M. 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 11, 453–75.CrossRefGoogle Scholar
Dilek, Y. & Thy, P. 2006. Age and petrogenesis of plagiogranite intrusions in the Ankara mélange, central Turkey. Island Arc 15, 4457.CrossRefGoogle Scholar
Dimadis, L. & Nikolov, T. 1997. An ammonite find in the Makri unit (Berriasian, southeast Rhodopes, northeast Greece). Comptes Rendus de l'Académie bulgare des Sciences 50, 71–4.Google Scholar
Dimadis, L., Papadopolous, P., Goranov, A. & Encheva, M. 1996. First biostratigraphic evidence for the presence of Triassic at Melia (Western Thrace, Greece). Geologica Balcanica 26, 3740.CrossRefGoogle Scholar
Dinter, D. A. 1998. Late Cenozoic extension of the Alpine collisional orogen, northeastern Greece: Origin of the north Aegean basin. Geological Society of America Bulletin 110, 1208–30.2.3.CO;2>CrossRefGoogle Scholar
Dinter, D. A., Macfarlane, A. M., Hames, W., Isachsen, C., Bowring, S. & Royden, L. 1995. U–Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics 14, 886908.CrossRefGoogle Scholar
Dixon, S. & Rutherford, M. J. 1979. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth and Planetary Science Letters 45, 4560.CrossRefGoogle Scholar
Dupuy, C., Dostal, J., Mercelot, G., Bougault, H., Joron, J. L. & Treuil, M. 1982. Geochemistry of basalts from central and southern New Hebrides arcs: implication for their source rock composition. Earth and Planetary Science Letters 60, 207–25.CrossRefGoogle Scholar
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. 1997. Element transport from slab to volcanic front at Mariana arc. Journal of Geophysical Research 102, 1499115019.CrossRefGoogle Scholar
Floyd, P. A., Yaliniz, M. K. & Göncüoğlu, M. C. 1998. Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos 42, 225–41.CrossRefGoogle Scholar
Frass, A., Hegewald, S., Kloos, R. M., Tesch, C. & Arikas, K. 1990. The geology of the graben of Petrota (Thrace, NE Greece). Geologica Rhodopica 2, 5063.Google Scholar
Harkovska, A., Yanev, Y. & Marchev, P. 1989. General features of the Paleogene orogenic magmatism in Bulgaria. Geologica Balcanica 19, 3772.Google Scholar
Hatzipanagiotou, K. & Tsikouras, B. 1999. Plagiogranites in the Hellenic ophiolites. Ofioliti 24, 283–92.Google Scholar
Haydoutov, I., Kolcheva, K., Daieva, L.-A., Savov, I. & Carrigan, C. 2004. Island-arc origin of the variegated formations from the East Rhodope, Bulgaria – implications for the evolution of the Rhodope Massif. Ofioliti 29, 145–57.Google Scholar
Hébert, R. & Laurent, R. 1990. Mineral chemistry of the plutonic section of the Troodos ophiolite: new constraints for genesis of arc-related ophiolites. In Proceedings of Troodos Ophiolite Symposium (eds Malpas, J., Moores, E., Panayotou, A. & Xenophontos, C.), pp. 149–63. Geological Survey of Cyprus.Google Scholar
Hole, M. J., Saunders, A. D., Marriner, G. F. & Tarney, J. 1984. Subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from the Mariana Islands. Journal of the Geological Society, London 141, 453–72.CrossRefGoogle Scholar
Innocenti, F., Kolios, N., Manetti, P., Mazzuli, R., Peccerillo, A., Rita, F. & Villari, L. 1984. Evolution and geodynamic significance of Tertiary orogenic volcanism in northeastern Greece. Bulletin of Volcanology 47, 2537.CrossRefGoogle Scholar
Irvine, T. H. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Ivanov, R. & Kopp, K. O. 1969. Das Alttertiär Thrakiens und der Ostrhodope. Geologica et Paleontologica 3, 123–51.Google Scholar
Jafri, S. H., Charan, S. N. & Govil, P. K. 1995. Plagiogranite from the Andaman ophiolite belt, Bay of Bengal, India. Journal of the Geological Society, London 154, 681–8.CrossRefGoogle Scholar
Jaranov, D. 1960. Tectonics of Bulgaria. Sofia: Technica, 283 pp. (in Bulgarian).Google Scholar
Kauffmann, G., Kockel, F. & Mollat, H. 1976. Notes on the stratigraphic and paleogeographic position of the Svoula formation in the Innermost Zone of the Hellenides (Northern Greece). Bulletin de la Societe Géologique de France 18, 225–30.CrossRefGoogle Scholar
Kockel, F., Mollat, H. & Walther, H. W. 1977. Erlauterungen zur geologicschen Karte der Chalkidiki und angrenzender Gebiete 1/100.000 (Nord Griechenland). Hanover: Bundesanstalt für Geowissenschaften und Rohstoffe, 119 pp.Google Scholar
Koepke, J., Berndt, J., Feig, S. T. & Holtz, F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153, 6784.CrossRefGoogle Scholar
Koglin, N., Reischmann, T., Kostopoulos, D., Matukov, D. & Sergeev, S. 2007. Zircon SHRIMP ages and the origin of ophiolitic rocks from the NE Aegean region, Greece. Geophysical Research Abstracts 9, paper 06848.Google Scholar
Kopp, K. O. 1969. Geologie Thrakiens VI: Der Coban Dag westlich von Alexandroupolis. Geotektonische Forschungen 31, 97116.Google Scholar
Krohe, A. & Mposkos, E. 2002. Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): evidence of episodic exhumation of high-pressure rocks. In The Timing and Location of Major Ore Deposits in an Evolving Orogen (eds Blundell, D. J., Neubauer, F. & von Quadt, A.), pp. 151–78. Geological Society of London, Special Publication no. 204.Google Scholar
Le Maitre, R. W. 2002. Igneous Rocks: a Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Leterrier, J., Maury, R. C., Thonon, P., Girard, D. & Marchal, M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters 59, 139–54.CrossRefGoogle Scholar
Liati, A. 2005. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U–Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contributions to Mineralogy and Petrology 150, 608–30.CrossRefGoogle Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist 68, 477–93.Google Scholar
Lips, A. L. W., White, S. H. & Wijbrans, J. R. 2000. Middle–Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta 13, 281–92.CrossRefGoogle Scholar
Luchitskaya, M. V., Morozov, O. L. & Palandzhyan, S. A. 2005. Plagiogranite magmatism in the Masozoic island-arc structure of the Pekulney Ridge, Chukotka Peninsula, NE Russia. Lithos 79, 251–69.CrossRefGoogle Scholar
Magganas, A. 2007. Plagiogranitic rocks of Evros ophiolite, NE Greece. Bulletin of the Geological Society of Greece 40, 884–98.CrossRefGoogle Scholar
Magganas, A. C. 2002. Constraints on the petrogenesis of Evros ophiolite extrusives, NE Greece. Lithos 65, 165–82.CrossRefGoogle Scholar
Magganas, A., Sideris, C. & Kokkinakis, A. 1991. Marginal basin-volcanic arc origin of metabasic rocks of the Circum-Rhodope Belt, Thrace, Greece. Mineralogy and Petrology 44, 235–52.CrossRefGoogle Scholar
Maratos, G. & Andronopoulos, B. 1964. Nouvelles données sur l'age des phyllites du Rhodope. Bulletin of the Geological Society of Greece 6, 113–32.Google Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.CrossRefGoogle Scholar
Mukasa, S., Haydoutov, I., Carrigan, C. & Kolcheva, K. 2003. Thermobarometry and 40Ar/39Ar ages of eclogitic and gneissic rocks in the Sredna Gora and Rhodope terranes of Bulgaria. Journal of Czech Geological Society 48, 94–5.Google Scholar
Murton, B. J., Peate, D. W., Arculus, R. J., Pearce, J. A. & Van Der Laan, S. 1992. Trace-Element Geochemistry Of Volcanic Rocks From Site 786: The Izu-Bonin Forearc. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 125 (eds Fryer, P., Pearce, V. L., Stokking, L. et al. ), pp. 211–35. College Station, Texas.Google Scholar
Natland, J. H. & Tarney, J. 1981. Petrologic evolution of the Mariana arc and back-arc system – a synthesis of drilling results in the South Philippine Sea. Initial Reports of Deep Sea Drilling Program 60, 877908. College Station, Texas.Google Scholar
Pamic, J., Tomljenović, B. & Balen, D. 2002. Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview. Lithos 65, 113–42.CrossRefGoogle Scholar
Panjasawatwong, Y., Danyushevsky, L. V., Crawford, A. J. & Harris, K. L. 1997. An experimental study of the effects of melt composition on plagioclase-melt equilibrium at 5 and 10 kbars: implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology 118, 420–32.CrossRefGoogle Scholar
Papadopoulos, P. & Anastasiadis, I. 2002. Geological map of Greece, scale 1:200 000 sheet Rhodopi-Thrace. Xanthi: IGME.Google Scholar
Papadopoulos, P., Arvanitidis, N. & Zanas, I. 1989. Some preliminary geological aspects on the Makri unit (Phyllite series), Peri-Rhodope Zone. Geologica Rhodopica 1, 3442.Google Scholar
Papanikolaou, D. 1997. The tectonostratigraphic terranes of the Hellenides. Annales géologiques des Pays Hellénique 37, 495514.Google Scholar
Pearce, J. A. 1996. A user's guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Application to massive sulphide exploration (ed. Wyman, D. A.), pp. 79113. Geological Association of Canada, Short Course Notes no. 12.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. 1999. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction component in western Pacific arc–basin systems. Journal of Petrology 40, 15971611.CrossRefGoogle Scholar
Pearce, J. A., Lippard, S. J. & Roberts, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins (eds Kokelaar, B. P. & Howells, M. F.), pp. 7794. Geological Society of London, Special Publication no. 16.Google Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Pearce, J. A., Van Der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D. W. & Parkinson, I. J. 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): a case study of magma genesis during the initial stages of subduction. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 125 (eds Fryer, P., Pearce, V. L., Stokking, L. et al. ), pp. 623–60. College Station, Texas.Google Scholar
Pedersen, R. B. & Malpas, J. 1984. The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway. Contributions to Mineralogy and Petrology 88, 3652.CrossRefGoogle Scholar
Peytcheva, I., Kostitsin, Y., Salnikova, E., von Quadt, A., Kamenov, B. & Klain, L. 1999. Alpine evolution of the magmatism in the West-Rhodopes: Rb–Sr and U–Pb isotope data. Journal of Conference Abstracts 4, 470.Google Scholar
Peytcheva, I. & Quadt, A. V. 1995. U–Pb zircon dating of metagranites from Byala Reka region in the east Rhodopes, Bulgaria. In Proceedings of XV Congress of Carpatho-Balkan Geological Association (ed. Papanikolaou, D.), pp. 637–42. Geological Society of Greece, Special Publication no. 4.Google Scholar
Ricou, L.-E., Burg, J.-P., Godfriaux, I. & Ivanov, Z. 1998. The Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta 11, 285309.CrossRefGoogle Scholar
Robertson, A. H. F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 167.CrossRefGoogle Scholar
Robertson, A. H. F., Dixon, J. E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I. & Ustaömer, T. 1996. Alternative tectonic models for the Late Paleozoic–Early Tertiary development of the Tethys in the Eastern Mediterranean region. In Paleomagnetism and Tectonics of the Mediterranean region (eds Morris, A. & Tarling, D. H.), pp. 239–63. Geological Society of London, Special Publication no. 105.Google Scholar
Rollinson, H. 1993. Using geochemical data: evaluation, presentation, interpretation. UK: Longman Group, 352 pp.Google Scholar
Shastry, A., Srivastava, R. K., Chandra, R. & Genner, G. A. 2001. Fe–Ti-enriched mafic rocks from south Andaman ophiolite suite: implication of late stage liquid immiscibility. Current Science 80, 453–4.Google Scholar
Shervais, J. W. 1982. Ti–V plots and the petrogenesis of modern ophiolitic lavas. Earth and Planetary Science Letters 57, 101–18.CrossRefGoogle Scholar
Sisson, T. W. & Grove, T. L. 1993. Experimental investigation of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 113, 143–66.CrossRefGoogle Scholar
Smith, A. G. 1993. Tectonic significance of Hellenic–Dinaric ophiolites. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 213–43. Geological Society of London, Special Publication no. 76.Google Scholar
Soldatos, T. & Christofides, G. 1986. Rb–Sr geochronology and origin of the Elatia Pluton, Central Rhodope, North Greece. Geologica Balcanica 16, 1523.Google Scholar
Stampfli, G. M. 2000. Tethyan oceans. In Tectonics and Magmatism in Turkey and Surrounding Region (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 123. Geological Society of London, Special Publication no. 173.Google Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Paleozoic and Mesozoic costrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 1733.CrossRefGoogle Scholar
Stampfli, G. M. & Borel, G. D. 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle (eds Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M. & Ziegler, P.), pp. 5390. Berlin: Springer Verlag.CrossRefGoogle Scholar
Stern, R. J. & Bloomer, S. H. 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin 104, 1621–36.2.3.CO;2>CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tikhomirova, L. B., Boyanov, I. & Zagorchev, I. 1988. Early Jurassic radiolarians from the Eastern Rhodopes: a revision of the age of Dolno Lukovo Formation. Geologica Balcanica 18, 58.Google Scholar
Trifonova, E. & Boyanov, I. 1986. Late Permian foraminifers from rock fragments in the Mesozoic phyllitoid formation of the East Rhodopes, Bulgaria. Geologica Balcanica 16, 2530.Google Scholar
Trikkalinos, J. K. 1955. Beiträge zur Erforschung des tektonischen Baues Griechenlands. Über das Alter der vortertiaren Schichten des Gebietes von Alexandroupolis–Didymotichon–Westthrazien. Annales Géologiques des Pays Hellénique 1, 81–2.Google Scholar
Taylor, B. (ed.) 1995. Backarc basins: tectonics and magmatism. New York: Plenum Press, 524 pp.CrossRefGoogle Scholar
Taylor, R. N. & Nesbitt, R. W. 1994. Arc volcanism in an extensional regime at the initiation of subduction – a geochemical study of Hahajima, Bonin Islands, Japan. In Volcanism Associated with Extension at Consuming Plate Margins (ed. Smellie, J. L.), pp. 115–34. Geological Society of London, Special Publication no. 81.Google Scholar
Tsikouras, B. & Hatzipanagiotou, K. 1998. Petrogenetic evolution of an ophiolite fragment in an ensialic marginal basin, northern Aegean (Samothraki Island, Greece). European Journal of Mineralogy 10, 551–67.CrossRefGoogle Scholar
Tsikouras, B., Pe-Piper, G. & Hatzipanagiotou, K. 1990. A new date for an ophiolite on the northeastern margin of the Vardar zone, Samothraki, Greece. Neues Jahrbuch für Mineralogie Monatschefte 11, 521–7.Google Scholar
von Braun, E. 1968. Die mesozoischen Hüllgesteine der SE-Rhodopen in Westthrazien (Griechenland). Geologisches Jahrbuch 85, 565–84.Google Scholar
Wessel, J. K., Fryer, P., Wessel, P. & Taylor, B. 1994. Extension in the Northern Mariana Inner Forearc. Journal of Geophysical Research 99, 15181–203.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Wood, D. A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 1130.CrossRefGoogle Scholar
Woodhead, J. D., Eggins, S. M. & Johnson, R. W. 1998. Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes. Journal of Petrology 39, 1641–8.CrossRefGoogle Scholar
Supplementary material: File

Bonev Supplementary Material

Appendix.doc

Download Bonev Supplementary Material(File)
File 1 MB