Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-09T23:26:35.490Z Has data issue: false hasContentIssue false

Extrusive carbonatites: their origins reappraised in the light of new experimental data

Published online by Cambridge University Press:  01 May 2009

John Gittins
Affiliation:
Department of Geology, University of Toronto, Toronto M5S 3B1, Canada
Bruce C. Jago
Affiliation:
Department of Geology, University of Toronto, Toronto M5S 3B1, Canada

Abstract

Calcite-rich carbonatites are commonly attributed to calcitization of alkalic carbonatite of Oldoinyo Lengai type. The interpretation arises from the presumption that magmatic crystallization of calcite at atmospheric pressure is not possible. We show that only a small percentage of fluorine, a common element in carbonatite magmas, permits such crystallization, and we argue that most of the calcite in extrusive carbonatites is magmatic. The presence of any more than minor apatite precludes an alkalic carbonatite parentage. While not denying that calcification of alkalic carbonatite can occur, we suggest that it is not generally responsible for the formation of extrusive calcific carbonatites.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D. K. 1989. Carbonatite melt from the mantle in the volcanoes of south-east Zambia. Nature 338, 415–18.CrossRefGoogle Scholar
Barker, D. S. 1989. Field relations of carbonatites. In Carbonatites (ed. Bell, K.), pp. 3869. London: Unwin Hyman.Google Scholar
Barker, D. S. & Nixon, P. H. 1989. High Ca, low-alkali carbonatite volcanism at Fort Portal, Uganda. Contributions to Mineralogy and Petrology 103, 166–77.CrossRefGoogle Scholar
Biggar, G. M. 1967. Apatite compositions and liquidus phase relationships on the join Ca(OH)2−CaF2−Ca3(PO4)2−H20 from 250–4000 bars. Mineralogical Magazine 36, 539–64.CrossRefGoogle Scholar
Biggar, G. M. 1969. Phase relations in the join Ca(0H)2–CaC03–Ca3(PO4)–H20 at 1000 bars. Mineralogical Magazine 31, 7582.CrossRefGoogle Scholar
Carlson, W. D. 1983. The polymorphs of CaCO3 and the aragonite–calcite transformation. Reviews in Mineralogy 11, 191225Google Scholar
Clarke, M. G. C. & Roberts, B. 1986. Carbonated melilitiles and calcitized alkalicarbonatites from Homa Mountain, western Kenya: a reinterpretation. Geological Magazine 123, 683–92.CrossRefGoogle Scholar
Dawson, J. B. 1989. Sodium carbonatite extrusions from Oldoinyo Lengai, Tanzania: implications for carbonatite complex genesis. In Carbonatites (ed. Bell, K.), pp. 255–77. London: Unwin Hyman.Google Scholar
Dawson, J. B., Garson, M. S. & Roberts, B. 1987. Altered lava from Oldoinyo Lengai, Tanzania: inferences for calcite carbonatite lavas. Geology 15, 765–8.Google Scholar
Deans, T. & Roberts, B. 1984. Carbonatite tuffs and lava clasts of the Tinderet foothills, western Kenya: a study of calcified natrocarbonatites. Journal of the Geological Society, London 141, 563–80.CrossRefGoogle Scholar
Gittins, J. 1989. The origin and evolution of carbonatite magmas. In Carbonatites (ed. Bell, K.), pp. 580600 London: Unwin Hyman.Google Scholar
Hay, R. L. 1983. Natrocarbonatite tephra of Kerimasi volcano, Tanzania. Geology 11, 5996022.0.CO;2>CrossRefGoogle Scholar
Hay, R. L. 1989. Holocene carbonatite–nephelinite tephra deposits of Oldoinyo Lengai, Tanzania. Journal of Volcanology and Geothermal Research 37, 7793.Google Scholar
Hay, R. L. & O'Neill, J. R. 1983. Carbonatite tuffs in the Laetolil Beds of Tanzania and the Kaiserstuhl in Germany. Contributions to Mineralogy and Petrology 82, 403–6.CrossRefGoogle Scholar
Hogarth, D. D. 1989. Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In Carbonatites (ed. Bell, K.), pp. 105–48. London: Unwin Hyman.Google Scholar
Jago, B. C. & Gittins, J. 1991. The role of fluorine in carbonatite magma evolution. Nature 349, 56–8.Google Scholar
Keller, J. 1989. Extrusive carbonatites and their significance. In Carbonatites (ed. Bell, K.), pp. 7088. London: Unwin Hyman.Google Scholar
Panina, L. I. & Podgornykh, N. M. 1975. Inclusions of melt in minerals from carbonatite of the Beloziminsky pluton. Doklady Akademii Nauk SSSR 223, 165–7.Google Scholar
Turner, D. C. 1988. Volcanic carbonatites of the Kaluwe complex, Zambia. Journal of the Geological Society, London 145, 95106CrossRefGoogle Scholar
Twyman, J. D. & Gittins, J. 1987. Alkalic carbonatite magma: parental or derivative? In Alkaline Igneous Rocks (ed. Fitton, J. G. & Upton, B. G. J.), pp. 8594. Geological Society Special Publication No. 30.Google Scholar
Wyllie, P. J. & Tuttle, O. F. 1960. The system CaO−CO2−H2O and the origin of carbonatites. Journal of Petrology 1, 146CrossRefGoogle Scholar