Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T18:08:18.128Z Has data issue: false hasContentIssue false

The evolution of the Lansarine–Baouala salt canopy in the North African Cretaceous passive margin in Tunisia

Published online by Cambridge University Press:  07 March 2013

AMARA MASROUHI*
Affiliation:
Department of Earth Sciences, Faculty of Sciences of Gabès, University of Gabès, Cité Riadh 6072 Gabès, Tunisia
OLIVIER BELLIER
Affiliation:
CEREGE, UMR CNRS, Université Aix-Marseille, IRD, Collège de France, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
HEMIN KOYI
Affiliation:
Hans Ramberg Tectonic Laboratory, Department of Earth Sciences, Uppsala University, Villavagen 16, SE-752 36, Uppsala, Sweden
JEAN-MARIE VILA
Affiliation:
7 Avenue Lombart, 92260 Fontenay-aux-roses, Paris, France
MOHAMED GHANMI
Affiliation:
Department of Geology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, Tunisia
*
Author for correspondence: amara.masrouhi@fsg.rnu.tn

Abstract

Detailed geological mapping, dating, and gravimetric and seismic data are used to interpret the Lansarine–Baouala salt structure (North Tunisia) as a salt canopy emplaced during the Cretaceous Period. The extensional tectonic regime related to the Cretaceous continental margin offered at least two factors that encouraged buried Triassic salt to extrude onto the sea floor and flow downslope: (i) extension induced normal faults that provided routes to the surface, and led to the formation of sub-marine slopes along which salt could flow; (ii) this structural setting led to differential sedimentation and consequently differential loading as a mechanism for salt movement. The present 40-km-long Lansarine–Baouala salt structure with its unique mass of allochthonous Triassic salt at surface was fed from at least four stems. The salt structure is recognized as one of the few examples worldwide of a subaerial salt canopy due to the coalescence of submarine sheets of Triassic salt extruded in Cretaceous times.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, R., Ouali, J., Mercier, E., Mansy, J. L., Van-Vliet Lanoe, B., Launeau, P., Rhekhiss, F. & Rafini, S. 2006. The geomorphologic imprints of hinge migration in the fault-related folds: a case study in southern-Tunisian Atlas. Journal of Structural Geology 28, 721–8.CrossRefGoogle Scholar
Alsop, I. 1996. Physical modelling of fold fracture geometries associated with salt diapirism. In Salt Tectonics (eds Alsop, G. L., Blundell, D. G., & Davison, I.), pp. 227–41. Geological Society of London, Special Publication no. 100.Google Scholar
Al-Zoubi, A. & Brink, U. S. ten 2001. Salt diapirs in the Dead Sea Basin and their relationship to Quaternary extensional tectonics. Marine and Petroleum Geology 18, 779–97.Google Scholar
Barde, J. P., Gralla, P., Harwijanto, J. & Marsky, J. 2002. Exploration at the eastern edge of the Precaspian basin: impact of data integration on Upper Permian and Triassic prospectivity. American Association of Petroleum Geologists Bulletin 86, 399415.Google Scholar
Batik, P. & Pini, S. 1973. Mise en évidence du Crétacé inférieur et du Cénomanien–Turonien au Nord-Est des Hédils (Tunisie septentrionale) Livre Jubilaire M. Solignac. Annales Mines et Géologie, Tunis 26, 213–18.Google Scholar
Beaubouef, R. T. & Friedmann, S. J. 2000. High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra-slope basins, western Gulf of Mexico: depositional models and reservoir analogs. In Deep-Water Reservoirs of the World. Proceedings of the Gulf Coast Section of Economic Paleontologists and Mineralogists Foundation 20th Annual Bob F. Perkins Research Conference (eds Weimer, P., Slatt, R. M., Coleman, J., Rosen, N. C., Nelson, H., Bouma, A. H., Styzen, M. J. & Lawrence, D. T.), pp. 4060. Curran Associates.Google Scholar
Benassi, R., Jallouli, C., Hammami, M. & Turki, M. M. 2006. The structure of Jebel El Mourra, Tunisia: a diapiric structure causing a positive gravity anomaly. Terra Nova 18, 432–39.Google Scholar
Ben Yagoub, J. 1978. Etude géologique de la région de Bou Arada (Atlas tunisien). PhD thesis (Thèse 3ème cycle), Pierre-et-Marie-Curie University (Paris VI), 91 pp.Google Scholar
Boughdiri, M., Cordey, F., Sallouhi, H., Maalaoui, K., Masrouhi, A. & Soussi, M. 2007. Jurassic radiolarian-bearing series of Tunisia: biostratigraphy and significance to western Tethys correlations. Swiss Journal of Geoscience 100, 431–41.CrossRefGoogle Scholar
Bracène, R. & Frizon de Lamotte, D. 2002. The origin of intraplate deformation in the Atlas system of western and central Algeria: from Jurassic rifting to Cenozoic–Quaternary inversion. Tectonophysics 357, 207–26.Google Scholar
Brun, J.-P. & Fort, X. 2011. Salt tectonics at passive margins: geology versus models. Marine and Petroleum Geology 28, 1123–45.CrossRefGoogle Scholar
Brun, J.-P., Fort, X. 2012 Salt tectonics at passive margins: geology versus models – Reply. Marine and Petroleum Geology 37, 195208.Google Scholar
Buffler, R. T. & Worzel, J. L. 1978. Deformation and origin of the Sigsbee Scarp – lower continental slope, northern Gulf of Mexico. 10th Annual Offshore Technology. Conference, Houston Texas OTC-317, 1424–39.Google Scholar
Canérot, J., Hudec, M. R. & Rockenbauch, K. 2005. Mesozoic diapirism in the Pyrenean orogen: salt tectonics on a transform plate boundary. American Association of Petroleum Geologists Bulletin 89, 211–29.Google Scholar
Carthago Oil Company Tunisia 2006. Farmout Executive Summary, Medjerda Exploration Permit, report April 2010, pp. 1–11.Google Scholar
Cherchi, A., Mancin, N., Montadert, L., Murru, M., Teresa Putzu, M., Schiavinotto, F. & Verrubbi, V. 2008. The stratigraphic response to the Oligo–Miocene extension in the western Mediterranean from observations on the Sardinia graben system (Italy). Bulletin de la Société Géologique de France 179, 267–87.Google Scholar
Correa Perez, I. & Gutierrez y Acosta, J. 1983. Interpretacion gravimetrica y magnetometrica del occidente de la cuenca salina del istmo. Revista del Instituto Mexicano del Petróleo 15, 525.Google Scholar
Crampon, N. 1971. Etude géologique de la bordure des Mogods, du pays de Bizerte et du nord des Hédil. PhD thesis (Thèse Es-sciences), Nancy I University, 522 pp.Google Scholar
Davison, I., Alsop, I., Evans, N., Saafricz, M. 2000. Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea. Marine and Petroleum Geology 17, 601–18.Google Scholar
Diegel, F. A., Karlo, J. F., Schuster, D. C., Shoup, R. C. & Tauvers, P. R. 1995. Cenozoic structural evolution and tectonostratigraphic framework of the northern Gulf Coast continental margin. In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.), pp. 109–51. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
El Ouardi, H. 1996. Halocinèse et rôle des décrochements dans l'évolution géodynamique de la partie médiane de la zone des dômes. PhD thesis, University of Tunis II, Tunis.Google Scholar
Faccenna, C., Speranza, F., D'ajello Caracciolo, F., Mattei, M. & Oggiano, G. 2002. Extensional tectonics on Sardinia: insights into the arc-back-arc transitional regime. Tectonophysics, 356, 213–32.CrossRefGoogle Scholar
Fletcher, R.C., Hudec, M. R. & Watson, I. A. 1995. Salt glacier and composite sediment: salt glacier models for the emplacement and early burial of allochthonous salt sheets. In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.), pp. 77108. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Fort, X. & Brun, J.-P. 2012. Kinematics of regional salt flow in the northern Gulf of Mexico. In Salt Tectonics, Sediments and Prospectivity (eds Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T. & Hodgkinson, R.), pp. 265–87. Geological Society of London, Special Publication no. 363.Google Scholar
Fournet, A. 1994. Carte Géologique de la Tunisie (Geological map of Tunisia), Mateur no. 12. l'Office National des Mines de Tunisie, 1 sheet, scale 1:50 000.Google Scholar
Fournet, A. 1999. Carte Géologique de la Tunisie (Geological map of Tunisia), Tebourba no. 19. l'Office National des Mines de Tunisie, 1 sheet, scale 1:50 000.Google Scholar
Frizon de Lamotte, D., Crespo-Blanc, A., Saint-Bezar, B., Comas, M., Fernandez, M., Zeyen, H., Ayarza, P., Robert-Charrue, C., Chalouan, A., Zizi, M., Teixell, A., Arboleya, M. L., Alvarez-Lobato, F., Julivert, M. & Michard, A. 2004. Transect I: Iberian Meseta – Guadalquivir Basin – Betic Cordillera – Alboran Sea – Rif – Moroccan Meseta – High Atlas – Sahara Platform. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. (eds Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M. & Ziegler, P. A.), CD. Springer, 141 pp.Google Scholar
Frizon de Lamotte, D., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., Guillocheau, F. & Michard, A. 2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics 475, 928.CrossRefGoogle Scholar
Gaullier, V. & Vendeville, B. C. 2005. Salt tectonics driven by sediment progradation: part II – Radial spreading of sedimentary lobes prograding above salt. American Association of Petroleum Geologists Bulletin 89, 1081–9.Google Scholar
Ghanmi, M., Ben Youssef, M., Jouirou, M., Zargouni, F. & Vila, J. M. 2001. Halocinèse crétacée au Jebel Kebbouch (Nord-Ouest tunisien): mise en place à fleur d'eau et évolution d'un ‘glacier de sel’ albien, comparaisons. Eclogae Geologicae Helvetiae 94, 153–60.Google Scholar
Guglielmo, G., Jackson, M. P. A. & Vendeville, B. C. 1997. Three-dimensional visualization of salt walls and associated fault systems. American Association of Petroleum Geologists Bulletin 81, 4661.Google Scholar
Guiraud, R. & Bosworth, W. 1997. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate scale tectonics. Tectonophysics 282, 3982.Google Scholar
Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. 2005. Phanerozoic geological evolution of Northern and Central Africa: an overview. Journal of African Earth Sciences 43, 83143.CrossRefGoogle Scholar
Hamdi-Nasr, I., Inoubli, M. H., Ben Salem, A., Tlig, S. & Mansouri, A. 2009. Gravity contributions to the understanding of salt tectonics from the Jebel Cheid area (dome zone, Northern Tunisia). Geophysical Prospecting 57, 719–28.Google Scholar
Hamdi-Nasr, I., Amiri, A., Inoubli, M. H., Ben Salem, A., Chaqui, A. & Tlig, S. 2010. Structural setting of northern Tunisia: insights from gravity data analysis Jendouba case study. Pure and Applied Geophysics 168, 1835–49.Google Scholar
Heaton, R. C., Jackson, M. P. A. & Bamahmoud, M. 1995. Superposed Neogene extension, contraction, and salt canopy emplacement in the Yemeni Read Sea. In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.), pp. 333–51. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2006. Advance of allochthonous salt sheets in passive margins and orogens. American Association of Petroleum Geologists Bulletin 90, 1535–64.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2007. Terra infirma: understanding salt tectonics. Earth-Science Reviews 82, 128.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2009. Interaction between spreading salt canopies and their peripheral thrust systems. Journal of Structural Geology 31, 1114–29.Google Scholar
Humphris, C. C. Jr 1978. Salt movement on continental slope, northern Gulf of Mexico. In Framework, Facies, and Oil-trapping Characteristics of the Upper Continental Margin (eds Bouma, A. H., Moore, G. T. & Coleman, J. M.), pp. 6986. American Association of Petroleum Geologists, Studies in Geology no. 7.Google Scholar
Jackson, M. P. A. 1995. Retrospective salt tectonics, In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G., & Snelson, S.), pp. 128. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Jackson, M. P. A., Cornelius, R. R., Craig, C. H., Gansser, A., Stocklin, J. & Talbot, C. J. 1990. Salt diapirs of the Great Kavir, central Iran. Geological Society of America Memoir 177, 139 pp.Google Scholar
Jackson, M. P. A. & Harrison, J. C. 2006. An allochthonous salt canopy on Axel Heiberg Island, Sverdrup Basin, Arctic Canada. Geology 34, 1045–8.Google Scholar
Jackson, M. P. A. & Talbot, C. J. 1986. External shapes, strain rates and dynamics of salt structures. Geological Society of America Bulletin 97, 305–28.Google Scholar
Jackson, M. P. A., Vendeville, B. C. & Schultz-Ela, D. D. 1994. Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences 22, 93117.Google Scholar
Jallouli, C., Chikhaoui, M., Brahem, A., Turki, M. M., Mickus, K. & Benassi, R. 2005. Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data. Tectonophysics, 396, 209–25.CrossRefGoogle Scholar
Jodot, P. 1920. Notes sur la situation géographique et les conditions tectoniques du site fossilifère de Djedaria (Tunisie). Bulletin de la Société Géologique de France 20, 38.Google Scholar
Kamoun, F., Peybernes, B., Ciszak, R. & Calzada, S. 2001. Triassic Paleogeography of Tunisia. Paleogeography, Paleoclimatology, Paleoecology 175, 223–42.Google Scholar
Kassaa, S. 1998. Petrologie des matériaux carbonates, Sulfures et strontianifères dans leur cadre stratigraphique, halocinétique et structural à Guern Halfaya, et au Jebel bou Khil (Domaine des ‘diapirs’ et des ‘glaciers de sel’, Tunisie du Nord-Ouest). PhD thesis, University of Tunis II, Tunis.Google Scholar
Koyi, H. 1991. Gravity overturns, extension and basement fault activation. Journal of Petroleum Geology 14, 117–42.Google Scholar
Koyi, H. 1996. Salt flow by aggrading and prograding overburdens. In Salt Tectonics (eds Alsop, G. L., Blundell, D. G., & Davison, I.), pp. 243–58. Geological Society of London, Special Publication no. 100.Google Scholar
Koyi, H. 1998. The shaping of salt diapirs. Journal of Structural Geology 20, 321–38.Google Scholar
Koyi, H., Jenyon, M. K. & Petersen, K. 1993. The effect of basement faulting on diapirism. Journal of Petroleum Geology 16, 285312.Google Scholar
Koyi, H. & Petersen, K. 1993. The influence of basement faults on the development of salt structures in the Danish Basin. Marine and Petroleum Geology 10, 8294.Google Scholar
Koyi, H., Talbot, C. & Tørudbakken, B. 1995. Salt tectonics in Northeastern Nordkapp Basin, Southwestern Barents Sea, In Salt tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.), pp. 437–47. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Lehner, P. 1969. Salt tectonics and Pleistocene stratigraphy on continental slope of northern Gulf of Mexico. American Association of Petroleum Geologists Bulletin 53, 2431–79.Google Scholar
Letouzey, J., Coletta, B., Vially, R. & Chermette, J. C. 1995. Evolution of salt-related structures in compressional settings. In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.), pp. 4160. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Maillard, A., Gaullier, V., Vendeville, B. C. & Odonne, F. 2003. Influence of differential compaction above basement steps on salt tectonics in the Ligurian-Provençal Basin, northwest Mediterranean. Marine and Petroleum Geology 20, 1327.Google Scholar
Martin, R. G. 1978. Northern and Eastern Gulf of Mexico continental margin: stratigraphic and structural framework. In Framework, Facies, and Oil-trapping Characteristics of the Upper Continental Margin (eds Bouma, A. H., Moore, G. T., & Coleman, J. M.), pp. 2142. American Association of Petroleum Geologists, Studies in Geology no. 7.Google Scholar
Masrouhi, A. 2006. Les appareils salifères des régions de Mateur, Tébourba et de Medjez-el-Bab (Tunisie du Nord). PhD thesis, Tunis-el-Manar University, 258 pp.Google Scholar
Masrouhi, A. & Koyi, H. A. 2012. Submarine “salt glacier” of Northern Tunisia, a case of Triassic salt mobility in North African Cretaceous passive margin. In Salt Tectonics, Sediments and Prospectivity (eds Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T. & Hodgkinson, R.), pp. 579–93. Geological Society of London, Special Publication no. 363.Google Scholar
Masrouhi, A., Ghanmi, M., Ben Youssef, M., Vila, J. M. & Zargouni, F. 2007. Definition of a thrust nappe with two Palaeogene units in the Lansarine plateau (northern Tunisia): a new structural element of the Tunisian Atlas and revaluation of the Tertiary compression phases. Comptes Rendus Geoscience 339, 441–8.CrossRefGoogle Scholar
Masrouhi, A., Ghanmi, M., Ben Youssef, M., Zargouni, F. & Vila, J. M. 2005. Halocinèse crétacée et halotectonique tertiaire dans les monts de Medjez-el-Bab: nouvelles observations, datations et données gravimétriques; extension des «glaciers de sel» sous-marins jusqu'à l'est du méridien de Téboursouk. Notes du Service Géologique de la Tunisie 73, 107–22.Google Scholar
Masrouhi, A., Ghanmi, M., Ben Slama, M.-M., Ben Youssef, M., Vila, J. M & Zargouni, F. 2008. New tectono-sedimentary evidence constraining the timing of the positive tectonic inversion and the Eocene Atlasic phase in northern Tunisia: implication for the North African paleo-margin evolution. Comptes Rendus Geosciences 340, 771–8.Google Scholar
Mauffret, A. & Gorini, C. 1996. Structural style and geodynamic evolution of Camargue and Western Provencal basin, southeastern France. Tectonics 15, 356–75.Google Scholar
McBride, B. C. 1998. The evolution of allochthonous salt along a megaregional profile across the northern Gulf of Mexico basin. In Gulf of Mexico Petroleum Systems (ed. Hurley, N.), pp. 1037–54. American Association of Petroleum Geologists Bulletin no. 82.Google Scholar
McBride, B. C., Rowan, M. G. & Weimer, P. 1998. The evolution of allochthonous salt systems, northern Green Canyon and Ewing Bank (offshore Louisiana). In Gulf of Mexico Petroleum Systems (ed. Hurley, N.), pp. 1013–36. American Association of Petroleum Geologists Bulletin no. 82.Google Scholar
McClay, K. & Dooly, T. 1996. Analogue models of pull-apart basins. Geology 23, 711–14.Google Scholar
Melki, F., Zouaghi, T., Ben Chelbi, M., Bédir, M. & Zargouni, F. 2010. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore. Comptes Rendus Geoscience 342, 741–53.Google Scholar
Melki, F., Zouaghi, T., Harrab, S., Casas Sainz, A., Bédir, M. & Zargouni, F. 2011. Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia. Journal of Geodynamics 52, 5769.Google Scholar
Mohr, M., Warren, J. K., Kukla, P. A., Urai, J. L. & Irmen, A. 2007. Subsurface record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany). Geology 35, 963–6.Google Scholar
Morgan, M. A., Grocott, J. & Moody, R. T. J. 1998. The structural evolution of the Zaghouan-Ressas Structural Belt, northern Tunisia. In Petroleum Geology of North Africa (eds Macgreggor, D. S., Moody, R. T. J. & Clark-Lowes, D. D.), pp. 405–22. Geological society of London, Special Publication no. 132.Google Scholar
Nely, G. 1980. Seismic facies and morphology of evaporates. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine. 4, 395410.Google Scholar
Outtani, F., Addoum, B., Mercier, E., Frizon de Lamotte, D. & Andrieux, J. 1995. Geometry and kinematics of the south Atlas front, Algeria and Tunisia. Tectonophysics 249, 233–48.Google Scholar
Parker, T. J., McDowell, A. N. 1955. Model studies of salt-dome tectonics. American Association of Petroleum Geologists Bulletin 39, 2383–470.Google Scholar
Perthuisot, V. 1978. Dynamique et pétrogenèse des extrusions triasiques de Tunisie septentrionale. Travaux du Laboratoire de Géologie no.12. Presses de l'Ecole Normale Supérieure Paris, 312 pp.Google Scholar
Perthuisot, V., Rouvier, H. & Smati, A. 1998. Style et importance des déformations anté-vraconnienes dans le Maghreb oriental: exemple du diapir du Jebel Slata. Bulletin de la Société Géologique de France 8, 389–98.Google Scholar
Pilcher, R. S., Kilsdonk, B. & Trude, J. 2011. Primary basins and their boundaries in the deep-water northern Gulf of Mexico: origin, trap types, and petroleum system implications. American Association of Petroleum Geologists Bulletin 95, 219–40.Google Scholar
Prather, B. E., Booth, J. R., Steffens, G. S. & Craig, P. A. 1998. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico. American Association of Petroleum Geologists Bulletin 82, 701–28.Google Scholar
Rigo, L., Garde, S., El Euch, H., Bandt, K. & Tiffert, J. 1996. Mesozoic fractured reservoirs in a compressional structural model for north-eastern Tunisia atlasic zone, Entreprise Tunisienne d'Activités Pétrolières 10, 233355.Google Scholar
Riley, P., Gordon, C., Simo, J. A., Tikoff, B. & Soussi, M. 2011. Structure of the Alima and associated anticlines in the foreland basin of the southern Atlas Mountains, Tunisia. Lithosphere 3 (1), 7691.Google Scholar
Rowan, M. G. 1995. Structural styles and evolution of allochthonous salt, central Louisiana outer shelf and upper slope. In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.) pp. 199228. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Rowan, M. G. 2002. Salt-related accommodation in the Gulf of Mexico deepwater: withdrawal or inflation, autochthonous or allochthonous? Gulf Coast Association of Geological Societies Transactions 52, 861–9.Google Scholar
Rowan, M. G., Lawton, T. F., Giles, K. A. & Ratliff, R. A. 2003. Near-salt deformation in La Popa Basin, Mexico, and the northern Gulf of Mexico: a general model for passive diapirism. American Association of Petroleum Geologists Bulletin 87, 733–56.CrossRefGoogle Scholar
Rowan, M. G., Ratliff, R. A., Trudgill, B. D. &. Duarte, J. B. 2001. Emplacement and evolution of the Mahogany salt body, central Louisiana outer shelf, northern Gulf of Mexico. American Association of Petroleum Geologists Bulletin 85, 947–69.Google Scholar
Rowan, M. G, Peel, F. J., Vendeville, B. C. & Gaullier, V. 2012. Salt tectonics at passive margins: geology versus models – discussion, Marine and Petroleum Geology 37, 184–94.Google Scholar
Salaj, J., Bajanik, S. 1972. Contribution à la stratigraphie du Crétacé et du paléogène de la région d'Oued zarga. Note du Service Géologique, Tunisie 38, 6371.Google Scholar
Schlische, R. W., Withjack, M. O. & Eisenstadt, G. 2002. An experimental study of the secondary deformation produced by oblique-slip normal faulting. American Association of Petroleum Geologists Bulletin 86, 885906.Google Scholar
Schuster, D. C. 1995. Deformation of allochthonous salt and evolution of related salt-structural systems, eastern Louisiana Gulf Coast, In Salt Tectonics: A Global Perspective (eds Jackson, M. P. A., Roberts, D. G. & Snelson, S.), pp. 177–98. American Association of Petroleum Geologists Memoir no. 65.Google Scholar
Seni, S. L. 1992. Evolution of salt structures during burial of salt sheets on the slope, northern Gulf of Mexico. Marine and Petroleum Geology 9, 452–68.Google Scholar
Souquet, P., Peybernes, B., Saadi, J., Ben Youssef, M., Ghanmi, M., Zarbout, M., Chikhaoui, M. & KAmoun, F. 1997. Séquences et cycles d'ordre 2 en régime extensif et transtensif: exemple du Crétacé inférieur de l'Atlas tunisien. Bulletin de la Société Géologique de France 168, 373–86.Google Scholar
Soussi, M. 2002. Le Jurassique de la Tunisie atlasique. Stratigraphie, dynamique sédimentaire, paléogéographie et intérêt pétrolier. Documents des Laboratoires de Geologie de Lyon 157, 363.Google Scholar
Soussi, M., Cirilli, S. & Abbes, C. 2001. Nouvelles données palynologiques sur la Formation Rheouis: consequences sur les correlations et la paleogeograpgie de la Tunisie au Trias superieur. Notes du Service géologique de Tunisie, 62, 87105.Google Scholar
Talbot, C. J. 1993. Spreading of salt structures in the Gulf of Mexico. Tectonophysics 228, 151–66.Google Scholar
Talbot, C. J. 1998. Extrusions of Hormuz salt in Iran. In The Past is the Key to the Present (eds Blundell, D. J., & Scott, A. C.), pp. 315–34. Geological Society of London, Special Publication no. 143.Google Scholar
Talbot, C. J. 2005. Discussion – ‘Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data’ by C. Jallouli et al., Tectonophysics 396 (2005) 209–225. Tectonophysics 406, 249–54.Google Scholar
Talbot, C. J. & Aftabi, P. 2004. Geology and models of salt extrusion at Qum Kuh, central Iran. Journal of the Geological Society of London 161, 321–34.Google Scholar
Talbot, C. J. & Jackson, M. P. A. 1987. Internal kinematics of salt diapirs. American Association of Petroleum Geologists Bulletin 71, 1068–98.Google Scholar
Talbot, C. J. & Pohjola, V. 2009. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. Earth-Science Reviews 97, 155–83.Google Scholar
Trusheim, F. 1960. Mechanism of salt migration in Northern Germany. American Association of Petroleum Geologists Bulletin 44, 1519–40.Google Scholar
Urai, J. L., Spiers, C. J., Zwart, H. J. & Lister, G. S. 1986. Weakening of rock salt by water during long term creep. Nature 324, 554–7.Google Scholar
Vendeville, B. 2005. Salt tectonics driven by sediment progradation: part I –mechanics and kinematics. American Association of Petroleum Geologists Bulletin 89, 1071–9.Google Scholar
Vendeville, B. & Jackson, M. P. A. 1992 a. The rise of diapirs during thin skinned extension. Marine and Petroleum Geology 9, 331–53.Google Scholar
Vendeville, B. & Jackson, M. P. A. 1992 b. The fall of diapirs during thin-skinned extension. Marine and Petroleum Geology 9, 354–71.Google Scholar
Vila, J.-M. 1995. Première étude de surface d'un grand ‘glacier de sel’ sous-marin: l'est de la structure Ouenza-Ladjbel-Meridef (confins algéro-tunisiens). Proposition d'un scenario de mise en place et comparaisons. Bulletin de la Société Géologique de France 166, 149–67.Google Scholar
Vila, J.-M., Ben Youssef, M., Chikhaoui, M. & Ghanmi, M. 1996. Un grand ‘glacier de sel’ sous marin albien du Nord-Ouest tunisien (250 km2?): le matériel salifère triasique du ‘diapir’ de Ben Gasseur et de l'anticlinal d'El Kef. Comptes Rendus de l'Académie des Sciences Paris 322, 221–7.Google Scholar
Vila, J.-M., Ghanmi, M., Ben Youssef, M. & Jouirou, M. 2002. Les ‘glaciers de sel’ sous marins des marges continentales passives du nord-est du Maghreb (Algérie-Tunisie) et de la Gulf Coast (USA): comparaisons, nouveau regard sur les “glaciers de sel” composites, illustré par celui de Fedj el Adoum (Nord-Ouest tunisien) et revue globale. Eclogae Geologicae Helvetiae 95, 347–80.Google Scholar
Watkins, J., Worzel, J., Houston, M. H., Ewing, M. & Sinton, J. B. 1975. Deep seismic reflection results from the Gulf of Mexico, Part 1. Sciences 187, 834–6.Google Scholar
Weijermars, R., Jackson, M. P. A. & Vendeville, B. C. 1993. Rheological and tectonic modeling of salt provinces. Tectonophysics 217, 143–74.Google Scholar
Worral, D. M. & Snelson, S. 1989. Evolution of the northern Gulf of Mexico, with emphasis on Cenozoic growth faulting and the role of salt. In The Geology of North America: An Overview (eds Bally, A. W. & Palmer, A. R.), pp. 97138. Geological Society of America, Decade of North American Geology.Google Scholar
Wu, S., Bally, A. W. & Cramez, C. 1990. Allochthonous salt structure and stratigraphy of the northeastern Gulf of Mexico, Part II: structure. Marine and Petroleum Geology 7, 334–70.Google Scholar
Yin, H. & Groshong, R. H. Jr 2007. A three-dimensional kinematic model for the deformation above an active diaper. American Association of Petroleum Geologists Bulletin 91, 343–63.Google Scholar
Yin, H., Zhang, J., Meng, L., Liu, Y. & Xu, S. 2009. Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir. Journal of Structural Geology 31, 989–95.Google Scholar
Zargouni, F. 1975. Etude géologique de la chaîne de Lansarine (région de Tébourba, Atlas tunisien). PhD thesis (Thèse 3ème cycle), Pierre-et-Marie-Curie University (Paris VI), 86 pp.Google Scholar