Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T02:57:23.678Z Has data issue: false hasContentIssue false

Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution

Published online by Cambridge University Press:  21 August 2007

JUN-HONG ZHAO*
Affiliation:
Institute of Geochemistry, Chinese Academy of Geosciences, Guiyang, Guizhou. China
RUIZHONG HU
Affiliation:
Institute of Geochemistry, Chinese Academy of Geosciences, Guiyang, Guizhou. China
MEI-FU ZHOU
Affiliation:
Department of Earth Sciences, the University of Hong Kong, Hong Kong
SHEN LIU
Affiliation:
Institute of Geochemistry, Chinese Academy of Geosciences, Guiyang, Guizhou. China
*
Author for correspondence; present address: Department of Earth Sciences, University of Hong Kong, Hong Kong; e-mail: jhzhao@hkusua.hku.hk

Abstract

Cretaceous mafic dykes in Fujian province, SE China provide an opportunity to examine the nature of their mantle source and the secular evolution of the Mesozoic lithospheric mantle beneath SE China. The mafic rocks have SiO2 ranging from 47.42 to 55.40 wt %, Al2O3 from 14.0 wt % to 20.4 wt %, CaO from 4.09 to 11.7 wt % and total alkaline (K2O+Na2O) from 2.15 wt % to 6.59 wt %. Two types are recognized based on their REE and primitive mantle-normalized trace element patterns. Type-A is the dominant Mesozoic mafic rock type in SE China and is characterized by enrichment of light rare earth elements (LREE) ((La/Yb)n = 2.85–19.0) and arc-like trace element geochemistry. Type-P has relatively flat REE patterns ((La/Yb)n = 1.68–3.43) and primitive mantle-like trace element patterns except for enrichment of Rb, Ba and Pb. Type-A samples show EMII signatures on the Sr-Nd isotopic diagram, whereas type-P rocks have high initial 143Nd/144Nd ratios (0.5126–0.5128) relative to the type-A rocks (143Nd/144Nd = 0.5124–0.5127). The type-A rocks have 207Pb/204Pb ranging from 15.47 to 15.67 and 206Pb/204Pb from 18.26 to 18.52. All the type-A rocks show a negative correlation between 143Nd/144Nd and 206Pb/204Pb ratios and a positive relationship between 87Sr/86Sr and 206Pb/204Pb ratios, indicating mixing of a depleted mantle source and an EMII component. Geochemical modelling shows that the parental magmas were formed by 5–15 % partial melting of a spinel lherzolite, and contaminated by less than 1 % melt derived from subducted sediment. The type-P magmas were derived from a mantle source unmodified by subduction components. The wide distribution of type-A dykes in SE China suggests that subduction-modified lithospheric mantle was extensive beneath the Cathaysia Block. Geochemical differences between Mesozoic and Cenozoic mafic rocks indicate that lithospheric thinning beneath SE China occurred in two episodes: firstly by heterogeneous modification by subducted components in early Mesozoic times, and later by chemical–mechanical erosion related to convective upwelling of the asthenosphere during Cenozoic times.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cervantes, P. & Wallace, P. J. 2003. Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235–8.2.0.CO;2>CrossRefGoogle Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.CrossRefGoogle Scholar
Chung, S. L., Sun, S. S., Tu, K., Chen, C. H. & Lee, C. Y. 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology 112, 120.CrossRefGoogle Scholar
Chung, S. L., Jahn, B. M., Chen, S. J., Lee, T. & Chen, C. H. 1995. Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta 59, 549–55.CrossRefGoogle Scholar
Dong, C. W., Zhang, D. R., Xu, X. S., Yen, Q. & Zhu, G. O. 2006. SHRIMP U–Pb dating and lithogeochemistry of basic-intermediate dyke swarms from Jinjiang, Fujian Province. Acta Petrologica Sinica 22, 16961702.Google Scholar
Dong, C. W., Zhou, X. M., Li, H. M., Ren, S. L. & Zhou, X. H. 1997. Late Mesozoic crust-mantle interaction in southeastern Fijian – isotopic evidence from the Pingtan igneous complex. Chinese Science Bulletin 42, 495–8.CrossRefGoogle Scholar
Dorendorf, F., Wiechert, U. & Wörner, G. 2000. Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia. Earth and Planetary Science Letters 175, 6986.CrossRefGoogle Scholar
Fan, W. M., Zhang, H. F., Baker, J., Jarvis, K. E., Mason, P. R. D. & Menzies, M. A. 2000. On and off the North China Craton: where is the Archaean keel? Journal of Petrology 41, 933–50.CrossRefGoogle Scholar
Flower, M. F. J., Zhang, M., Chen, C. Y., Tu, K. & Xie, G. H. 1992. Magmatism in the South China Basin 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chemical Geology 97, 6587.CrossRefGoogle Scholar
Geology and Mineral Resources Bureau of Fujian Province (GMRBF). 1985. Regional geology of Fujian Province. Beijing: Geological Publishing House (in Chinese).Google Scholar
Gorring, M. L. & Kay, S. M. 2001. Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina. Journal of Petrology 42, 1067–94.CrossRefGoogle Scholar
Gurenko, A. A. & Chaussidon, M. 1995. Enriched and depleted primitive melts included in olivine from Icelandic tholeiites: Origin by continuous melting of a single mantle column. Geochimica et Cosmochimica Acta 59, 2905–17.CrossRefGoogle Scholar
Hart, S. R. 1984 A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–7.CrossRefGoogle Scholar
Hawkesworth, C. J., Kempton, P. D., Rogers, N. W., Ellan, R. M. & van Calsteren, P. W. 1990. Continental lithosphere, and shallow level enrichment processes in the Earth's mantle. Earth and Planetary Science Letters 96, 256–68.CrossRefGoogle Scholar
Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. W. 1997. U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276, 551–5.CrossRefGoogle ScholarPubMed
Ho, K. S., Chen, J. C., Lo, C. H. & Zhao, H. L. 2003. 40Ar/39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fijian region, SE China: eruption ages, magma evolution and petrogenesis. Chemical Geology 197, 287318.CrossRefGoogle Scholar
Ishizuka, O., Taylor, R. N., Milton, J. A. & Nesbitt, R. W. 2003. Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth and Planetary Science Letters 211, 221–36.CrossRefGoogle Scholar
Jahn, B. M., Chen, P. Y. & Yan, T. P. 1976. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin 86, 763–76.2.0.CO;2>CrossRefGoogle Scholar
Jenner, G. A., Foley, S. F., Jackson, S. E., Green, T. H., Fryer, B. J. & Longerich, H. P. 1993. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasmamass spectrometry (LAM-ICP-MS). Geochimica et Cosmochimica Acta 57, 5099–130.CrossRefGoogle Scholar
Jin, W. S. & Sun, D. Z. 1997. Deep crustal structure of south China and its evolution. Beijing Geological Publishing House (in Chinese).Google Scholar
Johnson, K. T. M. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressure. Contributions to Mineralogy and Petrology 133, 60–8.CrossRefGoogle Scholar
Johnson, M. C. & Plank, T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1, 1999GC000014.CrossRefGoogle Scholar
Lapierre, H., Jahn, B. M., Charvet, J. & Yu, Y. W. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics 274, 321–38.CrossRefGoogle Scholar
Li, H. M., Dong, C. W., Xu, X. S. & Zhou, X. M. 1995. Single zircon U–Pb chronological study on the gabbro from Quanzhou. Chinese Science Bulletin 40, 158–60.Google Scholar
Li, X. H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences 18, 293305.CrossRefGoogle Scholar
Li, X. H., Liu, D. Y., Sun, M., Li, W. X., Liang, X. R. & Liu, Y. 2004. Precise Sm–Nd and U–Pb isotopic dating of the super-giant Shizhuyuan polymetallic deposit and its host gramite, Southeast China. Geological Magazine 141, 225–31.CrossRefGoogle Scholar
Li, X. H. & McCulloch, M. T. 1998. Geochemical characteristics of Cretaceous mafic dykes from northern Guangdong, SE China: Age, origin, and tectonic significance. In Mantle dynamics and plate interaction in East Asia (eds Flower, M. F. J., Chung, S.-L., Lo, C.-H. & Lee, T. Y.), pp. 405–19. American Geophysical Union Geodynamics Series no. 27. Washington, DC.CrossRefGoogle Scholar
Liu, C. Q., Masuda, A. & Xie, G. H. 1994. Major and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chemical Geology 114, 1942.CrossRefGoogle Scholar
Lu, H. F., Jia, D., Wang, Z. H., Guo, L. Z., Shi, Y. S. & Zhang, Q. L. 1994. Tectonic evolution of the Dongshan terrane, Fujian province, China. Journal of South American Earth Sciences 7, 349–65.CrossRefGoogle Scholar
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Mahoney, J. J., Sinton, J. M., Kurz, M. D., Mcdougall, J. D., Spencer, K. J. & Lugmair, G. W. 1994. Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific rise, 13–23°S. Earth and Planetary Science Letters 121, 173–93.CrossRefGoogle Scholar
Maruyama, S., Isozaki,Y., Y.,, Kimura,, G. & Terabayashi,, M. 1997. Paleogeographic maps of the Japanese islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc 6, 121–42.CrossRefGoogle Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.CrossRefGoogle Scholar
Mukasa, S. B., Fischer, G. M. & Barr, S. M. 1996. The character of the subcontinental mantle in Southeast Asia: isotopic and elemental compositions of extension-related Cenozoic basalts in Thailand. In Earth processes: reading the isotopic code (eds American Geophysical Union), pp. 233–52. AGU Monograph no. 95.Google Scholar
Münker, C. 2000. The isotope and trace element budget of the Cambrian Devil River arc system, New Zealand: identification of four source components. Journal of Petrology 41, 759–88.CrossRefGoogle Scholar
Nichols, G. T., Wyllie, P. J. & Stern, C. R. 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371, 785–8.CrossRefGoogle Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pearce, J. A. & Parkinson, I. J. 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 373403. Bath: Geological Society of London, Special Publication no. 76.Google Scholar
Peacock, S. M., Rushmer, T. & Thompson, A. B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters 121, 227–44.Google Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.CrossRefGoogle Scholar
Qi, L., Hu, J. & Gregoire, D. C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507–13.Google Scholar
Qu, Q., Taylor, L. A. & Zhou, X. M. 1994. Geochemistry and petrogenesis of three series of Cenozoic basalts from Southeastern China. International Geological Review 36, 435–51.Google Scholar
Stalder, R., Foley, S. F., Brey, G. P. & Horn, I. 1998. Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta 62, 17811801.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology; convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Stern, C. R. & Kilian, R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology 123, 263–81.CrossRefGoogle Scholar
Stolper, E. & Newman, S. 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters 121, 293325.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tu, K. & Flower, M. F. J. 1991. Sr Nd and Pb isotopic compositions of Hainan basalts (South China): Implications for a subcontinental lithosphere Dupal source. Geology 19, 567–9.2.3.CO;2>CrossRefGoogle Scholar
Wang, W. Y., Sueao, S., Takahashi, E., Yurimoto, H. & Gasparik, T. 2000. Enrichment processes at the base of the Archean lithospheric mantle: observations from trace element characteristics of pyropic garnet inclusions in diamonds. Contributions to Mineralogy and Petrology 139, 720–33.CrossRefGoogle Scholar
Wang, Z. H. 2002. The origin of the Cretaceous gabbros in the Fujian coastal region of SE China: implications for deformation-accompanied magmatism. Contributions to Mineralogy and Petrology 144, 230–40.CrossRefGoogle Scholar
Whalen, J. B., Syme, E. C. & Stern, R. A. 1999. Geochemical and Nd isotopic evolution of Paleoproterozoic arc-type granitoid magmatism in the Flin Flon Belt, Trans-Hudson orogen, Canada. Canadian Journal of Earth Sciences 36, 227–50.CrossRefGoogle Scholar
White, W. M., Hofmann, A. W. & Puchelt, H. 1987. Isotope geochemistry of Pacific mid-ocean ridge basalt. Journal of Geophysical Research 92, 4881–93.CrossRefGoogle Scholar
Woodhead, J. D., Eggins, S. & Gamble, J. 1993. High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for a multiphase melts extraction and a depleted mantle wedge. Earth and Planetary Science Letters 144, 491504.CrossRefGoogle Scholar
Xie, G. Q., Hu, R. Z., Franco, P., Li, R. L., Cao, J. J., Jiang, G. H. & Zhao, J. H. 2006. K–Ar Dating, Geochemical, and Sr–Nd–Pb Isotopic Systematics of Late Mesozoic Mafic Dikes, Southern Jiangxi Province, Southeast China: Petrogenesis and Tectonic Implications. International Geological Review 48, 1023–51.CrossRefGoogle Scholar
Xu, X. S., O'Reilly, S. Y., Griffin, W. L. & Zhou, X.,2000. Genesis of young lithospheric mantle in Southeastern China: an LAM-ICPMS trace element study. Journal of Petrology 41, 111–48.CrossRefGoogle Scholar
XuYu, J. H. Yu, J. H., X. S., O'Reilly, S. Y., Griffin, W. L. & Zhang, M. 2003. Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos 67, 77102.Google Scholar
Zhang, H. F. & Sun, M. 2002. Geochemistry of Mesozoic basalts and mafic dykes, Southeastern North China Craton, and tectonic implications. International Geological Review 44, 370–82.CrossRefGoogle Scholar
Zhang, H. F., Sun, M., Zhou, X. H., Zhou, M. F., Fan, W. M. & Zheng, J. P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta 67, 4373–87.CrossRefGoogle Scholar
Zhang, L. G., Wang, K. F., Chen, Z. S., Liu, J. X., Yu, G. X., Wu, K. L. & Lan, J. Y. 1994. On ‘Cathaysia’-Evidence from lead isotope study. Geological Review 40, 200–8 (in Chinese).Google Scholar
Zhang, M., Tu, K., Xie, G. H. & Flower, M. F. J. 1996. Subduction-modified subcontinental mantel in South China: trace element and isotope evidence in basalts from Hainan Island. Chinese Journal of Geochemistry 15, 119.CrossRefGoogle Scholar
Zhao, J. H., Hu, R. Z. & Liu, S. 2004. Geochemistry, petrogenesis, and tectonic significance of Mesozoic mafic dykes, Fujian Province, Southeastern China. International Geological Review 46, 542–57.CrossRefGoogle Scholar
Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., Zhang, M., Lu, F. X. & Liu, G. L. 2004. Nature and evolution of Mesozoic–Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos 74, 4165.CrossRefGoogle Scholar
Zhou, M.-F., Zhao, J. H., Qi, L., Su, W. C. & Hu, R. Z. 2006. Zircon U–Pb geochronology and elemental and Sr–Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China. Contributions to Mineralogy and Petrology 151, 119.CrossRefGoogle Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Zou, H. B., Zindler, A., Xu, X. S. & Qu, Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China, mantle sources, regional variations, and tectonic significance. Chemical Geology 171, 3347.CrossRefGoogle Scholar