Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:28:07.278Z Has data issue: false hasContentIssue false

Detrital zircon characterization of early Cambrian sandstones from East Avalonia and SE Ireland: implications for terrane affinities in the peri-Gondwanan Caledonides

Published online by Cambridge University Press:  16 July 2018

JOHN W.F. WALDRON*
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G2E3, Canada Department of Earth Science, St. Francis Xavier University, Antigonish NS B2G 2W5, Canada
DAVID I. SCHOFIELD
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK
GRAHAM PEARSON
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G2E3, Canada
CHIRANJEEB SARKAR
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G2E3, Canada
YAN LUO
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G2E3, Canada
ROBERT DOKKEN
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G2E3, Canada
*
Author for correspondence: john.waldron@ualberta.ca

Abstract

The Caledonides of Britain and Ireland include terranes attributed to both Laurentian and Gondwanan sources, separated along the Solway line. Gondwanan elements to the south have been variably assigned to the domains Ganderia and East Avalonia. The Midland Platform forms the core of East Avalonia but its provenance is poorly known. Laser ablation split-stream analysis yields information about detrital zircon provenance by providing simultaneous U–Pb and Lu–Hf data from the same ablated volume. A sample of Red Callavia Sandstone from uppermost Cambrian Stage 3 of the Midland Platform yields a U–Pb age spectrum dominated by Neoproterozoic and Palaeoproterozoic sources, resembling those in the Welsh Basin, the Meguma Terrane of Nova Scotia and NW Africa. Initial εHf values suggest that the Neoproterozoic zircon component was derived mainly from crustal sources < 2 Ga, and imply that the more evolved Palaeoproterozoic grains were transported into the basin from an older source terrane, probably the Eburnean Orogen of West Africa. A sample from Cambrian Stage 4 in the Bray Group of the Leinster–Lakesman Terrane shows, in contrast, a distribution of both U–Pb ages and εHf values closely similar to those of the Gander Terrane in Newfoundland and other terranes attributed to Ganderia, interpreted to be derived from the margin of Amazonia. East Avalonia is clearly distinct from Ganderia, but shows evidence for older crustal components not present in West Avalonia of Newfoundland. These three components of the Appalachian–Caledonide Orogen came from distinct sources on the margin of Cambrian Gondwana.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abati, J., Aghzer, A. M., Gerdes, A. & Ennih, N. 2010. Detrital zircon ages of Neoproterozoic sequences of the Moroccan Anti-Atlas belt. Precambrian Research 181 (1–4), 115–28.CrossRefGoogle Scholar
Abati, J., Aghzer, A. M., Gerdes, A. & Ennih, N. 2012. Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambrian Research 212–213, 263–74.CrossRefGoogle Scholar
Barr, S. M., Davis, D. W., Kamo, S. & White, C. 2003. Significance of U–Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Canada. Precambrian Research 126 (1–2), 123–45.CrossRefGoogle Scholar
Barr, S. M., Hamilton, M. A., Samson, S. D., Satkoski, A. M. & White, C. E. 2012. Provenance variations in northern Appalachian Avalonia based on detrital zircon age patterns in Ediacaran and Cambrian sedimentary rocks, New Brunswick and Nova Scotia, Canada. Canadian Journal of Earth Sciences 49 (3), 533–46.CrossRefGoogle Scholar
Barr, S. M. & Raeside, R. P. 1989. Tectono-stratigraphic terranes in Cape Breton Island, Nova Scotia: implications for the configuration of the northern Appalachian orogen. Geology 17, 822–5.2.3.CO;2>CrossRefGoogle Scholar
Bluck, B. J., Gibbons, W. & Ingham, J. K. 1992. Terranes. In Atlas of Palaeogeography and Lithofacies (eds Cope, J. C. W., Ingham, J. K. & Rawson, P. F.), pp. 14. Geological Society of London, Memoir no. 13.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273 (1–2), 4857.CrossRefGoogle Scholar
Brück, P. M. & Vanguestaine, M. 2004. Acritarchs from the Lower Palaeozoic succession on the south County Wexford coast, Ireland: new age constraints for the Cullenstown Formation and the Cahore and Ribband Groups. Geological Journal 39 (2), 199224.CrossRefGoogle Scholar
Cawood, P. A. & Nemchin, A. A. 2001. Paleogeographic development of the east Laurentian margin: constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians. Geological Society of America Bulletin 113, 1234–46.2.0.CO;2>CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Smith, M. & Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U-Pb dating of detrital zircon and implications for the East Laurentian margin. Journal of the Geological Society 160 (2), 231–46.CrossRefGoogle Scholar
Collins, A. S. & Buchan, C. 2004. Provenance and age constraints of the South Stack Group, Anglesey, UK: U-Pb SIMS detrital zircon data. Journal of the Geological Society 161, 743–6.CrossRefGoogle Scholar
Dewey, J. F. 1969. The evolution of the Caledonian/Appalachian orogen. Nature 222, 124–8.CrossRefGoogle Scholar
D'Lemos, R. S. & Holdsworth, R. E. 1995. Samarium-neodymium isotopic characteristics of the northeastern Gander Zone, Newfoundland Appalachians. In Current Perspectives in the Appalachian–Caledonian Orogen (eds Hibbard, J. P., van Staal, C. R. & Cawood, P. A.), pp. 239–52. Geological Association of Canada, Special Paper no. 41.Google Scholar
Domeier, M. 2016. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Research 36, 275–95.CrossRefGoogle Scholar
Fisher, C. M., Hanchar, J. M., Samson, S. D., Dhuime, B., Blichert-Toft, J., Vervoort, J. D. & Lam, R. 2011. Synthetic zircon doped with hafnium and rare earth elements; a reference material for in situ hafnium isotope analysis. Chemical Geology 286, 3247.CrossRefGoogle Scholar
Fisher, C. M., Vervoort, J. D. & DuFrane, S. A. 2014. Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method: Laser Ablation Split Stream U-Pb-Hf. Geochemistry, Geophysics, Geosystems 15, 121–39.CrossRefGoogle Scholar
From, R. E., Camacho, A., Pearson, D. G. & Luo, Y. 2018. U-Pb and Lu-Hf isotopes of the Archean orthogneiss complex on eastern Hall Peninsula, southern Baffin Island, Nunavut: Identification of exotic Paleo- to Mesoarchean crust beneath eastern Hall Peninsula. Precambrian Research 305, 341–57.CrossRefGoogle Scholar
Fyffe, L. R., Barr, S. M., Johnson, S. C., McLeod, M. J., McNicoll, V. J., Valverde-Vaquero, P., van Staal, C. R. & White, C. E. 2009. Detrital zircon ages from Neoproterozoic and Early Paleozoic conglomerate and sandstone units of New Brunswick and coastal Maine: Implications for the tectonic evolution of Ganderia. Atlantic Geology 45, 110–44.CrossRefGoogle Scholar
Guynn, J. & Gehrels, G. E. 2010. Comparison of Detrital Zircon Age Distributions Using the K-S Test. Unpublished document downloaded from https://docs.google.com/document/d/1MYwm8GcdYFOsfNV62B6PULb_-g2r1AS3vmm4gHMOFxg/preview, 16p.Google Scholar
Harland, W. B. & Gayer, R. A. 1972. The Arctic Caledonides and earlier oceans. Geological Magazine 109, 289314.CrossRefGoogle Scholar
Harvey, T. H. P., Williams, M., Condon, D. J., Wilby, P. R., Siveter, D. J., Rushton, A. W. A., Leng, M. J. & Gabbott, S. E. 2011. A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society 168 (3), 705–16.CrossRefGoogle Scholar
Hibbard, J. P., Van Staal, C. R. & Rankin, D. W. 2007. A comparative analysis of pre-Silurian crustal building blocks of the northern and the southern Appalachian orogen. American Journal of Science 307 (1), 2345.CrossRefGoogle Scholar
Kennedy, M. J. 1979. The continuation of the Canadian Appalachians into the Caledonides of Britain and Ireland. In The Caledonides of the British Isles – Reviewed (eds Harris, A. L., Holland, C. H. & Leake, B. E.), pp. 3364. Geological Society of London, Special Paper no. 8.Google Scholar
King, L. M. 1994. Subsidence analysis of Eastern Avalonian sequences: implications for Iapetus closure. Journal of the Geological Society 151, 647–57.CrossRefGoogle Scholar
Landing, E. 1996. Avalon; insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M. D.), pp. 2963. Geological Society of America, Special Paper no. 304.Google Scholar
Lerouge, C., Cocherie, A., Toteu, S. F., Penaye, J., Milesi, J. P., Tchameni, R., Nsifa, E. N., Fanning, C. M. & Deloule, E. 2006. Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, south-western Cameroon; consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences 44 (4–5), 413–27.CrossRefGoogle Scholar
Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K. & Tonk, C. 2004. West African provenance for Saxo-Thuringia (Bohemian Massif); Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. International Journal of Earth Sciences 93 (5), 683705.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00. Berkeley Geochronology Center, Special Publication, 71 pp.Google Scholar
MacDonald, F. A., Ryan-Davis, J., Coish, R. A., Crowley, J. L. & Karabinos, P. 2014. A newly identified Gondwanan terrane in the northern Appalachian Mountains: Implications for the Taconic orogeny and closure of the Iapetus Ocean. Geology 42 (6), 539–42.CrossRefGoogle Scholar
McConnell, B., Parkes, M., Crowley, Q. & Rushton, A. 2015. No Exploits back-arc basin in the Iapetus suture zone of Ireland. Journal of the Geological Society 172 (6), 740–7.CrossRefGoogle Scholar
Moecher, D. & Samson, S. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters 247 (3–4), 252–66.CrossRefGoogle Scholar
Murphy, J. B., Fernandez-Suarez, J., Jeffries, T. E. & Strachan, R. A. 2004. U–Pb (LA–ICP-MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc along the northern Gondwanan margin. Journal of the Geological Society of London 161, 243–54.CrossRefGoogle Scholar
Murphy, J. B., Waldron, J. W. F., Schofield, D. I., Barry, T. L. & Band, A. R. 2014. Depleted isotopic compositions evident in Iapetus and Rheic ocean basalts: implications for crustal generation and preservation. International Journal of Earth Sciences 103 (5), 1219–32.CrossRefGoogle Scholar
Nance, R. D. & Murphy, J. B. 1994. Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens; example from the Neoproterozoic Avalonian-Cadomian Belt. Geology 22 (7), 617–20.2.3.CO;2>CrossRefGoogle Scholar
Nance, R. D. & Murphy, J. B. 1996. Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian-Cadomian and related terranes in the Circum-North Atlantic. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M. D.), pp. 333–46. Geological Society of America, Special Paper no. 304.Google Scholar
Nesse, W.D. 2000. Introduction to Mineralogy. New York: Oxford University Press.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period. In A Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.), pp. 437–88. Amsterdam: Elsevier.CrossRefGoogle Scholar
Pharaoh, T. C. & Carney, J. N. 1987. Introduction to the Precambrian rocks of England and Wales. In Precambrian Rocks of England and Wales (eds Carney, J. N., Horak, J. M., Pharaoh, T. C., Gibbons, W., Wilson, D. & Barclay, W. J.), pp. 117. London: Chapman & Hall, Geological Conservation Review Series 20.Google Scholar
Pollock, J. C., Hibbard, J. P. & Sylvester, P. J. 2009. Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U-Pb detrital zircon constraints from Newfoundland. Journal of the Geological Society 166 (3), 501–15.CrossRefGoogle Scholar
Pollock, J. C., Sylvester, P. J., Barr, S. M. & Murphy, B. 2015. Lu–Hf zircon and Sm–Nd whole-rock isotope constraints on the extent of juvenile arc crust in Avalonia: examples from Newfoundland and Nova Scotia, Canada. Canadian Journal of Earth Sciences 52 (3), 161–81.CrossRefGoogle Scholar
Pothier, H. D., Waldron, J. W. F., Schofield, D. I. & DuFrane, S. A. 2015a. Peri-Gondwanan terrane interactions recorded in the Cambrian-Ordovician detrital zircon geochronology of North Wales. Gondwana Research 28, 9871001.CrossRefGoogle Scholar
Pothier, H. D., Waldron, J. W. F., DuFrane, S. A., White, C. E. & Jamieson, R. A. 2015b. Stratigraphy, provenance and tectonic setting of the Lumsden Dam and Bluestone Quarry formations (Lower Ordovician), Halifax Group, Nova Scotia. Atlantic Geology 51, 5183.CrossRefGoogle Scholar
Rast, N., O'Brien, B. H. & Wardle, R. J. 1976. Relationships between Precambrian and lower Palaeozoic rocks of the ‘Avalon Platform’ in New Brunswick, the Northeast Appalachians and the British Isles. Tectonophysics 30 (3–4), 315–38.CrossRefGoogle Scholar
Rocci, G., Bronner, G. & Deschamps, M. 1991. Crystalline basement of the West African Craton. In The West African Orogens and Circum-Atlantic Correlatives (eds Dallmeyer, R. D. & Lecorche, J. P.), pp. 2161. Berlin: Springer-Verlag.Google Scholar
Schenk, P. E. 1971. Southeastern Atlantic Canada, northwestern Africa, and continental drift. Canadian Journal of Earth Sciences 8, 1218–51.CrossRefGoogle Scholar
Schofield, D. I., Potter, J., Barr, S. M., Horák, J. M., Millar, I. L. & Longstaffe, F. J. 2016. Reappraising the Neoproterozoic ‘East Avalonian’ terranes of southern Great Britain. Gondwana Research 35, 257–71.CrossRefGoogle Scholar
Soderlund, U., Patchett, J., Vervoort, J. & Isachsen, C. 2004. The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219 (3–4), 311–24.CrossRefGoogle Scholar
Thomas, W. A. 2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3 (4), 304–8.CrossRefGoogle Scholar
Valverde-Vaquero, P., van Staal, C. R., McNicoll, V. & Dunning, G. R. 2006. Mid–Late Ordovician magmatism and metamorphism along the Gander margin in central Newfoundland. Journal of the Geological Society 163, 347–62.CrossRefGoogle Scholar
van Staal, C. R., Barr, S. M. & Murphy, J. B. 2012. Provenance and tectonic evolution of Ganderia: Constraints on the evolution of the Iapetus and Rheic oceans. Geology 40 (11), 987–90.CrossRefGoogle Scholar
van Staal, C. R., Dewey, J. F., MacNiocaill, C. & McKerrow, W. S. 1998. The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus. In Lyell: the Past is the Key to the Present (eds Blundell, D. J. & Scott, A. C.), pp. 199242. Geological Society of London, Special Publication no. 143.Google Scholar
van Staal, C. R., Sullivan, R. W. & Whalen, J. B. 1996. Provenance and tectonic history of the Gander Zone in the Caledonian/Appalachian Orogen; implications for the origin and assembly of Avalon. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M. D.), pp. 347–67. Geological Society of America, Special Paper no. 304.Google Scholar
Vanguestaine, M., Brück, P.M., Maziane-Serrajb, N. & Higgs, K.T. 2002. Cambrian palynology of the Bray Group in County Wicklow and South County Dublin, Ireland. Review of Palaeobotany and Palynology 120, 5372.CrossRefGoogle Scholar
Vermeesch, P. 2012. On the visualisation of detrital age distributions. Chemical Geology 312–313, 190–4.CrossRefGoogle Scholar
Waldron, J. W. F., McNicoll, V. J. & van Staal, C. R. 2012. Laurentia-derived detritus in the Badger Group of central Newfoundland: deposition during closing of the Iapetus Ocean. Canadian Journal of Earth Sciences 49 (1), 207–21.CrossRefGoogle Scholar
Waldron, J. W. F., Schofield, D. I., DuFrane, S. A., Floyd, J. D., Crowley, Q. G., Simonetti, A., Dokken, R. J. & Pothier, H. D. 2014a. Ganderia-Laurentia collision in the Caledonides of Great Britain and Ireland. Journal of the Geological Society 171 (4), 555–69.CrossRefGoogle Scholar
Waldron, J. W. F., Schofield, D. I. & Murphy, J. B. 2018. Diachronous Palaeozoic accretion of peri-Gondwanan terranes at the Laurentian margin. In Fifty Years of the Wilson Cycle Concept in Plate Tectonics (eds Wilson, R. W., Houseman, G. A., McCaffrey, K. J. W., Doré, A. G. & Buiter, S. J. H.). Geological Society of London, Special Publication no. 470, published online 29 March 2018, doi: 10.1144/SP470.11.Google Scholar
Waldron, J. W. F., Schofield, D. I., Murphy, J. B. & Thomas, C. W. 2014b. How was the Iapetus Ocean infected with subduction? Geology 42 (12), 1095–8.CrossRefGoogle Scholar
Waldron, J. W. F., Schofield, D. I., White, C. E. & Barr, S. M. 2011. Cambrian successions of the Meguma Terrane, Nova Scotia, Canada, and Harlech Dome, North Wales, UK: dispersed fragments of a peri-Gondwanan basin? Journal of the Geological Society 168, 8398.CrossRefGoogle Scholar
Waldron, J. W. F., White, C. E., Barr, S. M., Simonetti, A. & Heaman, L. M. 2009. Provenance of the Meguma terrane, Nova Scotia: rifted margin of early Paleozoic Gondwana. Canadian Journal of Earth Sciences 46, 19.CrossRefGoogle Scholar
Williams, H. 1978. Geological development of the northern Appalachians: its bearing on the evolution of the British Isles. In Crustal Evolution in Northwestern Britain and Adjacent Regions (eds Bowes, D. L. & Leake, B. E.), pp. 122. Liverpool: Seel House Press. Geological Journal, Special Issue 10.Google Scholar
Williams, H. 1979. Appalachian Orogen in Canada. Canadian Journal of Earth Sciences 16, 792807.CrossRefGoogle Scholar
Williams, H., Colman-Sadd, S. P. & Swinden, H. S. 1988. Tectonic-stratigraphic subdivisions of central Newfoundland. In Current Research Part 1B, pp. 91–8. Geological Survey of Canada, Paper 88–1B.Google Scholar
Williams, H. & Hatcher, R. D. 1982. Suspect terranes and accretionary history of the Appalachian orogen. Geology 10, 530–6.2.0.CO;2>CrossRefGoogle Scholar
Williams, H. & Hatcher, R. D. 1983. Appalachian suspect terranes. In Contributions to the Tectonics and Geophysics of Mountain Chains (eds Hatcher, R. D., Williams, H. & Zietz, I.), pp. 3353. Geological Society of America, Memoir no. 158.CrossRefGoogle Scholar
Willner, A. P., Barr, S. M., Gerdes, A., Massonne, H.-J. & White, C. E. 2013. Origin and evolution of Avalonia: evidence from U–Pb and Lu–Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot–Venn Massif, Belgium. Journal of the Geological Society 170 (5), 769–84.CrossRefGoogle Scholar
Willner, A. P., Gerdes, A., Massonne, H.-J., Van Staal, C. R. & Zagorevski, A. 2014. Crustal evolution of the northeast Laurentian Margin and the Peri-Gondwanan microcontinent Ganderia prior to and during closure of the Iapetus Ocean: Detrital zircon U–Pb and Hf isotope evidence from Newfoundland. Geoscience Canada 41 (3), 345.CrossRefGoogle Scholar
Wilson, J. T. 1966. Did the Atlantic close and then re-open? Nature 211, 676–81.CrossRefGoogle Scholar
Woodcock, N. H. & Strachan, R. A. (eds) 2000. Geological History of Britain and Ireland. Blackwell Science, International, 442 pp.Google Scholar
Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Guenther, D. & Fontaine, G. H. 2008. Simultaneous determinations of U-Pb age, trace element compositions and Hf isotopes of zircon by LA-Q and MC-ICPMS. Geochimica et Cosmochimica Acta 72, A1066.Google Scholar
Xie, L.-W., Zhang, Y.-B., Zhang, H.-H., Sun, J.-F. & Wu, F.-Y. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin 53, 1565–73.Google Scholar
Supplementary material: PDF

Waldron et al. supplementary material

Waldron et al. supplementary material 1

Download Waldron et al. supplementary material(PDF)
PDF 508.5 KB