Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T15:00:26.309Z Has data issue: false hasContentIssue false

Detection of a weak late-stage deformation event in granitic gneiss through anisotropy of magnetic susceptibility: implications for tectonic evolution of the Bomdila Gneiss in the Arunachal Lesser Himalaya, Northeast India

Published online by Cambridge University Press:  11 April 2016

R. K. BIKRAMADITYA SINGH*
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun – 248001, India
A. KRISHNAKANTA SINGH
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun – 248001, India
KOUSHIK SEN
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun – 248001, India
S. J. SANGODE
Affiliation:
Department of Geology, University of Pune, Pune – 411007, India
*
Author for correspondence: rkaditya17@rediffmail.com

Abstract

Outcrop-scale structures and magnetic fabric anisotropy of the Bomdila Gneiss (BG) that intruded the Lesser Himalayan Crystallines (LHC) of the Arunachal Lesser Himalaya are studied to understand the BG deformation history and tectonic evolution. Detailed analysis of structures reveals that the LHC have undergone three phases of deformation, D1, D2 and D3. The S2 foliation developed during the second phase of deformation (D2) is the most penetrative planar fabric in the studied rock, which shows a general ENE–WSW strike with moderate NW dip. Mesoscopic evidence of a later phase of deformation (D3) in the BG is lacking. Evidence of D3 deformation in the form of F3 folds is only observed in the adjacent metasedimentary rocks of the LHC. The magnetic foliations recorded from anisotropy of magnetic susceptibility (AMS) analysis of the BG are mostly striking NW–SE with a moderate dip towards the NE or SW, and magnetic lineation is mostly sub-horizontal and dominantly plunging towards the SE. Our study shows that the magnetic fabric of the BG does not correspond to any visible outcrop-scale mesoscale foliation. However, the magnetic foliation of the BG is parallel to the axial plane of the F3 folds of the adjacent metasedimentary rocks of the LHC. Integration of AMS and outcrop-scale structural analysis helps us envisage the superposed deformation history of the BG. Our study emphasizes the importance of AMS to detect late-stage or feeble deformation events that leave no visible outcrop-scale imprint and are difficult to discern through conventional geological means.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmendinger, R. W., Reilinger, R. & Loveless, J. 2007. Strain and rotation rate from GPS in Tibet, Anatolia and the Altiplano. Tectonics 26, TC3013, doi: 10.1029/2006TC002030. 18 pp.Google Scholar
Angelier, J. & Baruah, S. 2009. Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophysical Journal International 178, 303–26.CrossRefGoogle Scholar
Aranguren, A., Cuevas, J. & Tubia, J. 1996. Composite magnetic fabrics from S-C mylonites. Journal of Structural Geology 18, 863–9.Google Scholar
Bhushan, S. K., Bindal, C. M. & Aggarwal, R. K. 1991. Geology of Bomdila group in Arunachal Pradesh. Himalayan Geology 2, 207–14.Google Scholar
Bikramaditya Singh, R. K. 2010. Geochemistry and petrogenesis of granitoids of Lesser Himalayan Crystallines Western Arunachal Himalaya. Journal of Geological Society of India 75, 618–31.Google Scholar
Bikramaditya Singh, R. K. & Gururajan, N. S. 2011. Microstructures in quartz and feldspars of the Bomdila Gneiss from western Arunachal Himalaya Northeast India: implications for the geotectonic evolution of the Bomdila mylonitic zone. Journal of Asian Earth Sciences 42, 1163–78.Google Scholar
Borradaile, G. J. & Henry, B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Science Reviews 42, 4993.Google Scholar
Borradaile, G. J. & Jackson, M. 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In Magnetic Fabric: Methods and Applications (eds Martín-Hernández, F., Lüneburg, C. M., Aubourg, C. & Jackson, M.), pp. 299360. Geological Society of London, Special Publication no. 238.Google Scholar
Bouchez, J. L. 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J.-L., Hutton, D. & Stephens, W. E.), pp 95112. Dordrecht: Kluwer Academic Publishers.Google Scholar
Burg, J. P., Nievergelt, P., Oberli, F., Seward, D., Davy, P., Maurin, J. C., Diao, Z. Z. & Meier, M. 1998. The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences 16, 239–52.Google Scholar
Burg, J. P. & Podladchikov, Y. 1999. Lithospheric scale folding: numerical modelling and application to the Himalayan syntaxes. International Journal Earth Sciences 88, 190200.Google Scholar
Choudhuri, B. K., Gururajan, N. S. & Bikramaditya Singh, R. K. 2009. Geology and structural evolution of the eastern Himalayan syntaxis. Himalayan Geology 30, 1734.Google Scholar
Copley, A. 2008. Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophysical Journal of International 174, 1081–100.Google Scholar
De Wall, H., Greiling, R. O. & Sadek, M. F. 2001. Post-collisional shortening in the late Pan-African Hamisana high strain zone, SE Egypt: field and magnetic fabric evidence. Precambrian Research 107, 79194.Google Scholar
Dikshitulu, G. D., Pandey, B. K., Krishna, V. & Dhana Raju, R. 1995. Rb–Sr systematics on granitoids of the Central Gneissic Complex, Arunachal Himalaya: implications on tectonic, stratigraphy and source. Journal of Geological Society of India 45, 5160.Google Scholar
Ding, L., Zhong, D., Yin, A., Kapp, P. & Harrison, T. M. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters 192, 423–38.Google Scholar
Gan, W., Zhang, P., Shen, Z., Niu, Z., Wang, M., Wan, Y., Zhou, D. & Cheng, J. 2007. Present day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research 112, B08416, doi: 10.1029/2005JB004120.CrossRefGoogle Scholar
Gansser, A. 1964. The Geology of the Himalayas. New York: Wiley Interscience, 289 pp.Google Scholar
Gowd, T. N., Srirama Rao, S. V. & Gaur, V. K. 1992. Tectonic stress field in the Indian subcontinent. Journal of Geophysical Research 97 (B8), 11879–88.Google Scholar
Gupta, T. D., Riguzzi, F., Dasgupta, S., Mukhopadhyay, B., Roy, S. & Sharma, S. 2015. Kinematics and strain rates of the eastern Himalayan syntaxis from new GPS campaigns in Northeast India. Tectonophysics 655, 1526.Google Scholar
Gururajan, N. S. & Choudhuri, B. K. 2003. Geology and tectonic history of the Lohit valley, eastern Arunachal Pradesh, India. Journal of Asian Earth Sciences 21, 731–41.Google Scholar
Heidbach, O., Fuchs, K., Muller, B., Reinecker, J., Sperner, B., Tingay, M. & Wenzel, F. 2007. The world stress map. Episodes 30, 197201.Google Scholar
Housen, B. A., Richter, C. & Van der Pluijm, B. 1993. Composite magnetic anisotropy fabrics: experiments, numerical models and implications for the quantification of rock fabrics. Tectonophysics 220, 112.Google Scholar
Hrouda, F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5, 3782.Google Scholar
Jayangondaperumal, R., Dubey, A. K. & Sen, K. 2010. Mesoscopic and magnetic fabrics in arcuate igneous bodies: an example from the Mandi-Karsog pluton, Himachal Lesser Himalaya. Geological Magazine 147, 652–64.Google Scholar
Jelinek, V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 9, T63T67.Google Scholar
Kratinová, Z., Schulmann, K., Edel, J. B., Ježek, J. & Schaltegger, U. 2007. Model of successive granite sheet emplacement in transtensional setting: integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics 26, TC6003, doi: 10.1029/2006TC002035.Google Scholar
Kumar, G. 1997. Geology of Arunachal Pradesh. Bangalore: Geological Society India, 217 pp.Google Scholar
Le Fort, P. 1975. Himalayas, the collided range: present knowledge of the continental arc. American Journal of Science 275A, 144.Google Scholar
Majumder, S. & Mamtani, M. A. 2009. Magnetic fabric in the Malanjkhand Granite (Central India) – implications for regional tectonics and Proterozoic suturing of the Indian Shield. Physics of the Earth and Planetary Interiors 172, 310–23.Google Scholar
Mamtani, M. A. & Greiling, R. O. 2005. Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India) – inferences from magnetic fabric. Journal of Structural Geology 27, 2008–29.CrossRefGoogle Scholar
Mamtani, M. A., Greiling, R. O., Karanth, R. V. & Merh, S. S. 1999. Orogenic deformation and its relationship to AMS fabric – an example from the southern margin of the Aravalli Mountain Belt, India. In The Indian Subcontinent and Gondwana: A Palaeomagnetic and Rock Magnetic Perspective (eds Radhakrishna, T. & Piper, J. D. A.), pp. 924. Geological Society of India Memoir no. 44.Google Scholar
Mamtani, M. A. & Sengupta, P. 2010. Significance of AMS analysis in evaluating superposed folds in quartzites. Geological Magazine 147, 910–8.CrossRefGoogle Scholar
Metcalfe, R. P. 1993. Pressure, temperature and time constraints on metamorphism across the Main Central thrust zone and High Himalayan slab in the Garhwal Himalaya. In Himalayan Tectonics (eds Treloar, P. J. & Searle, M. P.), pp. 485509. Geological Society of London, Special Publication no. 74.Google Scholar
Mukherji, A., Chaudhuri, A. K. & Mamtani, M. A. 2004. Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Journal of Structural Geology 26, 2175–89.Google Scholar
Ono, T., Hosomi, Y., Arai, H. & Takagi, H. 2010. Comparison of petrofabrics with composite magnetic fabrics of S–C mylonite in paramagnetic granite. Journal of Structural Geology 32, 214.Google Scholar
Otofuji, Y., Yokoyama, M., Kitada, K. & Zaman, H. 2010. Paleomagnetic versus GPS determined tectonic rotation around eastern Himalayan syntaxis in East Asia. Journal of Asian Earth Sciences 37, 438–51.Google Scholar
Raposo, M. I. B. & Gastal, M. C. P. 2009. Emplacement mechanism of the main granite pluton of the Lavras do Sul intrusive complex, South Brazil, determined by magnetic anisotropies. Tectonophysics 466, 1831.Google Scholar
Rashid, S. 2009. The Precambrian granitic magmatism in the NE Himalaya: implications for ancient tectonics. In Geological Anatomy of India and the Middle East (eds Ahmad, T., Hirsch, F. & Charusiri, P.). Journal of the Virtual Explorer, vol. 32, paper 5, doi: 10.3809/jvirtex.2009.00244.Google Scholar
Rochette, P. 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology 9, 1015–20.Google Scholar
Saha, D. 2013. Lesser Himalayan sequences in eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India. Geoscience Frontier 4, 289304.Google Scholar
Sarma, K. P., Bhattacharjee, S., Nandy, S., Konwar, P. & Mazumdar, N. 2014. Structure, stratigraphy and magnetic susceptibility of Bomdila Gneiss, Western Arunachal Himalaya, India. Journal of the Geological Society of India 84, 544–54.Google Scholar
Sen, K., Dubey, A. K., Tripathi, K. & Pfänder, J. A. 2012. Composite mesoscopic and magnetic fabrics of the Paleo-Proterozoic Wangtu Gneissic Complex, Himachal Himalaya, India: implications for ductile deformation and superposed folding of the Himalayan basement rocks. Journal of Geodynamics 61, 8193.Google Scholar
Sen, K. & Mamtani, M. A. 2006. Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Journal of Structural Geology 28, 1870–82.Google Scholar
Sen, K., Mukherjee, B. K. & Collins, A. S. 2014. Interplay of deformation and magmatism in the Pangong transpression zone, eastern Ladakh, India: implications for remobilization of the trans-Himalayan magmatic arc and initiation of the Karakoram Fault. Journal of Structural Geology 62, 1324.Google Scholar
Singh, S. & Jain, A. K. 2003. Himalayan granitoids. In Granitoids of the Himalayan Collisional Belt (ed. Singh, S.). Journal of the Virtual Explorer, vol. 11, paper 01, doi: 10.3809/jvirtex.2003.00069.Google Scholar
Srinivasan, V. 2001. Stratigraphy and structure of low grade metasedimentaries in eastern Bhutan and western Arunachal Pradesh. Himalayan Geology 22, 8398.Google Scholar
Srivastava, H. B., Srivastava, V., Srivastava, R. K. & Singh, C. K. 2011. Structural analyses of the crystalline rocks between Dirang and Tawang, west Kameng district, Arunachal Himalaya. Journal Geological Society of India 78, 4556.Google Scholar
Stacey, F. D., Joplin, G. & Lindsay, J. 1960. Magnetic anisotropy and fabric of some foliated rocks from S. E. Australia. Pure and Applied Geophysics 47, 3040.Google Scholar
Tanaka, K., Mu, C., Sato, K., Takemoto, K., Miura, D., Liu, Y., Zaman, H., Yang, Z., Yokoyama, M., Iwamoto, H., Uno, K. & Otofuji, Y. 2008. Tectonic deformation around the eastern Himalayan syntaxis: constraints from the Cretaceous palaeomagnetic data of the Shan-Thai Block. Geophysical Journal International 175, 713–28.Google Scholar
Tarling, D. H. & Hrouda, F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 215 pp.Google Scholar
Thakur, V. C. 1998. Structure of the Chamba nappe and position of the Main Central Thrust in Kashmir Himalaya. Journal of Asian Earth Sciences 16, 269–82.Google Scholar
Tomezzoli, R. N., Mcdonald, W. D. & Tickyj, H. 2003. Composite magnetic fabric and S-C structures in granite gneiss of Cerro de los Viejos, La Pampa province, Argentina. Journal of Structural Geology 5, 351–68.Google Scholar
Tripathi, K., Sen, K. & Dubey, A. K. 2012. Modification of fabric in pre-Himalayan granitic rocks by post-emplacement ductile deformation: insights from microstructures, AMS, and U–Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment Zone, Himachal High Himalaya. International Journal of Earth Sciences 101, 761–72.Google Scholar
Verma, P. K. & Tandon, S. K. 1976. Geological observations in a part of the Kameng 1018 district, Arunachal Pradesh (NEFA). Himalayan Geology 6, 259–86.Google Scholar
Vernant, P., Bilham, R., Szeliga, W., Drupka, D., Kalita, S., Bhattacharyya, A. K., Gaur, V. K., Pelgay, P., Cattin, R. & Berthet, T. 2014. Clockwise rotation of the Brahmaputra Valley relative to India: tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. Journal of Geophysical Research: Solid Earth 119, 6558–71.Google Scholar
Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z. & Chen, Q. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science 294, 574–77.Google Scholar
Yin, A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Science Reviews 76, 1131.Google Scholar
Yin, A., Dubey, C. S., Kelty, T. K., Webb, A. A. G., Harrison, T. M., Chou, C. Y. & Celerier, J. 2010. Geologic correlation of the Himalayan orogen and Indian craton: Part 2: Structural geology, geochronology, and tectonic evolution of the eastern Himalaya. Geological Society of America Bulletin 122, 360–95.Google Scholar
Zak, J., Verner, K. & Tycova, P. 2008. Multiple magmatic fabrics in plutons: an overlooked tool for exploring interactions between magmatic processes and regional deformation? Geological Magazine 145, 537–51.Google Scholar
Zhang, J. & Piper, J. D. A. 1994. Magnetic fabric and post-orogenic uplift and cooling magnetizations in a Precambrian granulite terrain: the Datong-Huaian region of the North China Shield. Tectonophysics 243, 227–46.Google Scholar
Zhang, P. Z., Shen, Z., Wang, M., Gan, W., Burgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S. & Xinzhao, Y. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32, 809–12.Google Scholar