Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T15:03:30.791Z Has data issue: false hasContentIssue false

Carbon isotope stratigraphy across the Silurian–Devonian transition in Podolia, Ukraine: evidence for a global biogeochemical perturbation

Published online by Cambridge University Press:  02 July 2009

K. MAŁKOWSKI
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
G. RACKI*
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
D. DRYGANT
Affiliation:
State Museum of Natural History, National Academy of Sciences of Ukraine, Teatralna 18, Lviv 79008, Ukraine
H. SZANIAWSKI
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
*
Author for correspondence: racki@twarda.pan.pl

Abstract

The carbon and oxygen isotope composition of marine carbonates (δ13C and δ18O, respectively) are studied in the fossiliferous, stratigraphically well-constrained and remarkably expanded successions of Podolia, SW Ukraine, spanning the Silurian–Devonian transition. Significant isotopic shifts are directly comparable to previously published global secular trends in well-preserved brachiopod calcite isotopic ratios from this region, and therefore may be taken as a reliable primary record of seawater δ13C changes. The sections reveal a major positive δ13C excursion, with an amplitude above 6 ‰, beginning in the upper Pridoli and reaching peak values as heavy as +4.2 ‰ in the lowermost Lochkovian. This turnover in carbon cycling is followed by a general trend toward more negative δ13C values in the upper Lochkovian. The Podolian isotopic signals provide strong support for the previously inferred global biogeochemical perturbation across the Silurian–Devonian transition, reflecting a complex combination of palaeogeographical, biogeochemical and evolutionary processes in the late Caledonian geodynamic setting, with a likely undervalued role of the expanding vegetation in vast near-coastal shallows and deltas.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abushik, A. F. 1971. Ostracods from the Silurian–lower Devonian key sections of Podolia. In Paleozoyskiye Ostrakody iz Opornykh Razrezov Yevropeyskoy Chasti SSSR, pp. 7133. Moscow: Akademia Nauk SSSR (in Russian).Google Scholar
Ando, A., Kaihoa, K., Hodaka Kawahata, H. & Kakegawa, T. 2008. Timing and magnitude of early Aptian extreme warming: unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 463–76.CrossRefGoogle Scholar
Andrew, A. S., Hamilton, P. J., Mawson, R., Talent, J. A. & Whitford, D. J. 1994. Isotopic correlation tools in the mid-Paleozoic and their relation to extinction events. Australian Petroleum Production and Exploration Association Journal 34, 268–77.Google Scholar
Arkhangelskaya, A. D. 1980. Plant spores from some Lower Devonian sections of the western regions of the Russian Platform. Trudy VNIGRI 217, 2646 (in Russian).Google Scholar
Azmy, K., Veizer, J., Bassett, M. G. & Copper, P. 1998. Oxygen and carbon isotopic composition of Silurian brachiopods: implications for coeval seawater and glaciations. Geological Society of America Bulletin 110, 14991512.2.3.CO;2>CrossRefGoogle Scholar
Azmy, K., Kaufman, A. J., Misi, A. & de Oliveira, T. F. 2006. Isotope stratigraphy of the Lapa Formation, São Francisco Basin, Brazil: implications for Late Neoproterozoic glacial events in South America. Precambrian Research 149, 231–48.CrossRefGoogle Scholar
Barnes, C., Hallam, A., Kaljo, D., Kauffman, E. G. & Walliser, O. H. 1996. Global event stratigraphy. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), pp. 319–33. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Barrick, J. E., Meyer, B. D. & Ruppel, S. C. 2005. The Silurian–Devonian boundary and the Klonk Event in the Frame Formation, subsurface West Texas. Bulletin of American Paleontology 369, 105–22.Google Scholar
Blieck, A. & Cloutier, R. 2000. Biostratigraphical correlations of Early Devonian vertebrate assemblages of the Old Red Sandstone Continent. Courier Forschunginstitut Senckenberg 223, 223–69.Google Scholar
Brand, U. 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater–chemistry proxies. Chemical Geology 204, 2344.CrossRefGoogle Scholar
Brocke, R., Fatka, O. & Wilde, V. 2006. Acritarchs and prasinophytes of the Silurian–Devonian GSSP (Klonk, Barrandian area, Czech Republic). Bulletin of Geosciences 81, 2741.CrossRefGoogle Scholar
Brunton, F. R., Smith, L., Dixon, O. A., Copper, P., Kershaw, S. & Nestor, H. 1998. Silurian reef episodes, changing seascapes and paleobiogeography. In Silurian Cycles, Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes (eds Landing, E. & Johnson, M. E.), pp. 265–82. New York State Museum Bulletin vol. 491.Google Scholar
Buggisch, W. & Joachimski, M. M. 2006. Carbon isotope stratigraphy of the Devonian of Central and Western Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 6888.CrossRefGoogle Scholar
Buggisch, W. & Mann, U. 2004. Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe. International Journal of Earth Sciences 93, 521–41.Google Scholar
Carls, P., Slavík, L. & Valenzuela-Ríos, J. I. 2007. Revisions of conodont biostratigraphy across the Silurian–Devonian boundary. Bulletin of Geosciences 82, 145–64.CrossRefGoogle Scholar
Chlupáč, I. & Hladil, J. 2000. The global stratotype section and point of the Silurian–Devonian boundary. Courier Forschungsinstitut Senckenberg 225, 18.Google Scholar
Chlupáč, I. & Vacek, F. 2003. Thirty years of the first international stratotype: the Silurian–Devonian boundary at Klonk and its present status. Episodes 26, 1015.CrossRefGoogle Scholar
Copper, P. 2002. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In Phanerozoic Reef Patterns (eds Kiessling, W., Flügel, E. & Golonka, J.), pp. 181–238. Society of Economic Paleontologists and Mineralogists, vol. 72.Google Scholar
Cramer, B. D. & Saltzman, M. R. 2007. Fluctuations in epeiric sea carbonate production during Silurian positive carbon isotope excursions: a review of proposed paleoceanographic models. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 3745.CrossRefGoogle Scholar
Drygant, D. 1984. Korrelyaciya i Konodonty Silurijskih–Nizhnedevonskih Otlozhenij Volyno–Podolij. Kiev: Naukova Dumka, 192 pp.Google Scholar
Drygant, D. 2000. Lower and Middle Paleozoic of the Volyn'–Podillja margin of the East-European Platform and Carpathian Foredeep. Naukovi Zapiski Deržavnogo Prirodoznavčogo Muzeû 15, 24130 (in Ukrainian with English summary).Google Scholar
Drygant, D. 2003. About the problem of correlation and stratigraphic division of Lower Devonian deposits in the Volyn'–Podillja part of the East-European Platform Naukovi Zapiski Deržavnogo Prirodoznavčogo Muzeû 18, 195208 (in Ukrainian with English summary).Google Scholar
Dupret, V. & Blieck, A. 2009. The Lochkovian–Pragian boundary in Podolia (Lower Devonian, Ukraine) based upon placoderm vertebrates. Comptes Rendus Geosciences 341, 6370.CrossRefGoogle Scholar
Gill, B. C., Lyons, T. W. & Saltzman, M. R. 2007. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 156–73.CrossRefGoogle Scholar
Gomez, F. J., Ogle, N., Astini, R. A. & Kalin, R. M. 2007. Paleoenvironmental and carbon-oxygen isotope record of Middle Cambrian carbonates (La Laja Formation) in the Argentine Precordillera. Journal of Sedimentary Research 77, 826–42.CrossRefGoogle Scholar
Gurevich, K. Y., Zavyalova, Y. A., Pomyanovskaya, G. M. & Khizhnyakov, A. V. 1963. Toward characteristics of Devonian deposits of the Volyn'–Podillja margin of the East-European Platform. Trudy UkrNIGRI 5, 218–32 (in Russian).Google Scholar
Hamon, Y. & Merzeraud, G. 2007. C and O isotope stratigraphy in shallow-marine carbonate: a tool for sequence stratigraphy (example from the Lodève region, peritethian domain). Swiss Journal of Geosciences 100, 7184.CrossRefGoogle Scholar
Herten, U. & Mann, U. 2003. Global and environmental significance of enhanced bioproductivity at the Silurian/Devonian boundary In AAPG Annual Meeting 2003: Energy − Our Monumental Task, Salt Lake City, Utah. http://aapg.confex.com/aapg/sl2003/techprogram/paper_80486.htm.Google Scholar
Hladíková, J., Hladil, J. & Kříbek, B. 1997. Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology 132, 225–41.CrossRefGoogle Scholar
Hladíková, J., Hladil, J. & Jackova, I. 1999. Evolution of Silurian and Devonian sedimentary environments in Prague basin using isotopic compositions of carbon and oxygen in brachiopod shells (Central Bohemia, Barrandien Area. In 3th International Symposium on applied Isotope Geochemistry (AIG–3), Abstracts and Program, Orleans, France, pp. 12. Orleans: Bureau de Recherche Géologique et Miniěre (BRGM).Google Scholar
House, M. R. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 525.CrossRefGoogle Scholar
Immenhauser, A., Della Porta, G., Kenter, J. A. M. & Bahamonde, J. R. 2003. An alternative model for positive shifts in shallow–marine carbonate δ13C and δ18O. Sedimentology 50, 953–9.CrossRefGoogle Scholar
Jeppsson, L. 1998. Silurian Oceanic Events: summary of general characters. In Silurian Cycles, Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes (eds Landing, E. & Johnson, M. E.), pp. 239–57. New York State Museum Bulletin vol. 491.Google Scholar
Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag–Henning, C. & Buggisch, W. 2002. Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 91109.CrossRefGoogle Scholar
Kaljo, D., Boucot, A. J, Corfield, R. M., Le Herisse, A., Koren, T. N., Kriz, J., Männik, P., Maerss, T., Nestor, V., Shaver, R. H., Siveter, D. J. & Viira, V. 1996. Silurian bio-events. global event stratigraphy. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), pp. 173224. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kaljo, D., Kiipli, T. & Martma, T. 1998. Correlation of carbon isotope events and environmental cyclicity in the East Baltic Silurian. In Silurian Cycles, Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes (eds Landing, E. & Johnson, M. E.), pp. 297–312. New York State Museum Bulletin vol. 491.Google Scholar
Kaljo, D., Martma, T., Männik, P. & Viira, V. 2003. Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Société Géologique de France 174, 5966.CrossRefGoogle Scholar
Kaljo, D., Grytsenko, V., Martma, T. & Mõtus, M. A. 2007. Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian Journal of Earth Sciences 56, 205–20.CrossRefGoogle Scholar
Kozłowski, R. 1929. Les Brachiopodes gothlandiens de la Podolie polonaise. Palaeontologia Polonica 1, 1254.Google Scholar
Kranendonck, O. 2004. Geo- and Biodynamic Evolution during Late Silurian/Early Devonian Time (Hazro Area, SE Turkey). Schriften des Forschungszentrum Jülich, Umwelt/Environment 49, 1268.Google Scholar
Li, X. H., Jenkyns, H. C., Wang, C. S., Hu, X. M., Chen, X., Wei, Y. H., Huang, Y. J. & Cui, J. 2006. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, London 163, 375–82.CrossRefGoogle Scholar
Loydell, D. K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal 42, 531–46.CrossRefGoogle Scholar
Loydell, D. K. & Frýda, J. 2007. Carbon isotope stratigraphy of the upper Telychian and lower Sheinwoodian (Llandovery–Wenlock, Silurian) of the Banwy River section, Wales. Geological Magazine 144, 1015–19.CrossRefGoogle Scholar
Lubeseder, S. 2008. Palaeozoic low-oxygen, high-latitude carbonates: Silurian and Lower Devonian nautiloid and scyphocrinoid limestones of the Anti-Atlas (Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 264, 195209.CrossRefGoogle Scholar
Małkowski, K. & Racki, G. 2009. A global biogeochemical perturbation across the Silurian–Devonian boundary: ocean-continent-biosphere feedbacks. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 244–54.CrossRefGoogle Scholar
Martinsson, A. (ed.) 1977. The Silurian–Devonian Boundary. International Union of Geological Sciences Publication, Series A, Number 5. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), pp. 1349.Google Scholar
Mashkova, T. V. 1971. Zonal conodont assemblages from boundary beds of the Silurian and Devonian of Podolia. In Granitsa Silura i Dievona i Biostratigrafya Silura. Trudy III Miezhdunarodnogo Simpozyuma, t. I, pp. 157–64. Leningrad: Izdatielstvo Nauka (in Russian).Google Scholar
McCrea, J. M. 1950. The isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849–57.CrossRefGoogle Scholar
Melim, L. A., Westphal, H., Swart, P. K., Eberli, G. P. & Munnecke, A. 2002. Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Marine Geology 185, 2753.CrossRefGoogle Scholar
Munnecke, A., Samtleben, C. & Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden − relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 99124.CrossRefGoogle Scholar
Narbutas, W. W. 1984. Krasnocvetnaja Formacija Nizhnego Devona Pribaltiki i Podolii. Vilnius: Mokslas, 136 pp.Google Scholar
Nikiforova, O. I. 1977. Podolia. In The Silurian–Devonian Boundary (ed. Martinsson, A.), pp. 5164. International Union of Geological Sciences Publication, Series A, Number 5 Stuttgart: Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller).Google Scholar
Nikiforova, O. I. & Obut, A. M. 1960. Stratigraphy and paleogeography of the Silurian deposits in the USSR. International Geological Congress, Copenhagen, Report 21 (7), 2232.Google Scholar
Nikiforova, O. I. & Predtechensky, N. N. 1968. A guide to the geological excursion on Silurian and Lower Devonian deposist of Podolia (Middle Dnestr River). In Third International Symposium on Silurian–Devonian Boundary and Lower and Middle Devonian Stratigraphy, pp. 158. Leningrad: Ministry of Geology of the USSR.Google Scholar
Nikiforova, O. I., Predtechensky, N. N., Abushik, A. F., Ignatovich, M. M., Modzalevskaya, T. L., Berger, A. Y., Novoselova, L. S. & Burkov, Y. K. 1972. Opornyj Razrez Silura i Nizhnego Devona Podolii. Leningrad: Izdatielstvo Nauka, 258 pp.Google Scholar
Panchuk, K. M., Holmden, C. & Kump, L. R. 2005. Sensitivity of the epeiric sea carbon isotope record to local-scale carbon cycle processes: tales from the Mohawkian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 228, 320–37.CrossRefGoogle Scholar
Panchuk, K. M., Holmden, C. & Leslie, S. A. 2006. Local controls on carbon cycling in the Ordovician midcontinent region of North America, with implications for carbon isotope secular curves. Journal of Sedimentary Research 76, 200–11.CrossRefGoogle Scholar
Paris, F. & Grahn, Y. 1996. Chitinozoa of the Silurian–Devonian boundary sections in Podolia, Ukraine. Palaeontology 39, 629–49.Google Scholar
Porębska, E. & Sawłowicz, Z. 1997. Palaeoceanographic linkage of geochemical and graptolite events across the Silurian–Devonian boundary in Bardzkie Mountains (Southwest Poland). Palaeogeography, Palaeoclimatology, Palaeoecology 132, 343–54.CrossRefGoogle Scholar
Porębska, E., Sawłowicz, Z. & Strauss, H. 1999. Organic carbon and sulfide sulfur isotope studies from the O/S and S/D boundary sediments in Poland. In Ninth Annual V.M. Goldschmidt Conference, Harvard University, Cambridge, Massachusetts, Abstract 7242. Lunar and Planetary Institute Contribution vol. 971, Houston (CD-ROM), http://www.lpi.usra.edu/meetings/gold99/pdf/7242.pdf.Google Scholar
Prokoph, A., Shields, G. A. & Veizer, J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews 87, 113–33.CrossRefGoogle Scholar
Saltzman, M. R. 2001. Silurian δ13C stratigraphy: a view from North America. Geology 29, 671–4.2.0.CO;2>CrossRefGoogle Scholar
Saltzman, M. R. 2002. Carbon isotope (δ13C) stratigraphy across the Silurian–Devonian transition in North America: evidence for a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 187, 83100.CrossRefGoogle Scholar
Saltzman, M. R., Groessens, E. & Zhuravlev, A. V. 2004. Carbon cycle models based on extreme changes in δ13C: an example from the lower Mississippian. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 359–77.CrossRefGoogle Scholar
Salvador, A. (ed.) 1994. International Stratigraphic Guide: A Guide to Stratigraphic Classification, Terminology, and Procedure, 2nd edition. International Union of Geological Sciences, International Subcommission on Stratigraphic Classification. Boulder: Geological Society of America, pp. 1214, http://www.stratigraphy.org/guide.htm.Google Scholar
Schönlaub, H. P., Kreutzer, L. H., Joachimski, M. M. & Buggisch, W. 1994. Paleozoic boundary sections of the Carnic Alps (Southern Austria). In Geochemical Event Markers in the Phanerozoic. Abstracts and Guidebook (ed. Buggisch, W.), pp. 77–103. Erlanger Geologische Abhandlungen vol. 122.Google Scholar
Simon, L., Goddéris, Y., Werner, B., Strauss, H. & Joachimski, M. M. 2007. Modeling the carbon and sulfur isotope compositions of marine sediments: climate evolution during the Devonian. Chemical Geology 246, 1938.CrossRefGoogle Scholar
Skompski, S., Łuczyński, P., Drygant, D. & Kozłowski, W. 2008. High-energy sedimentary events in lagoonal successions of the Upper Silurian of Podolia, Ukraine. Facies 54, 277–96.CrossRefGoogle Scholar
Tsegelnyuk, P. D. 1994. Stratigraphy of the Lower Devonian deposits of Volyn–Podolia. Geologichesky Journal 1, 4657 (in Russian with English summary).Google Scholar
Uchman, A., Drygant, D., Paszkowski, M., Porębski, S. J. & Turnau, E. 2004. Early Devonian trace fossils in marine to non-marine redbeds in Podolia, Ukraine: palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 214, 6783.CrossRefGoogle Scholar
Vacek, F. 2007. Carbonate microfacies and depositional environments of the Silurian—Devonian boundary strata in the Barrandian area (Czech Republic). Geologica Carpathica 58, 497510.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Goddéris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.CrossRefGoogle Scholar
Voichyshyn, V. K. 2001. Distribution of fossil remains of Agnatha and accompanying vertebrate groups in the Lower Devonian deposits of Podolia. Naukovi Zapiski Deržavnogo Prirodoznavčogo Muzeû 16, 4758 (in Ukrainian).Google Scholar
Walliser, O. H. 1996. Global Events in the Devonian and Carboniferous. Global event stratigraphy. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), pp. 225–50. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Wigforss-Lange, J. 1999. Carbon isotope 13C enrichment in Upper Silurian (Whitcliffian) marine calcareous rocks in Scania, Sweden. GFF 121, 273–9.CrossRefGoogle Scholar
Williams, M. J. & Saltzman, M. R. 2005. Chemostratigraphy of the Helderberg (Siluro-Devonian) mixed carbonate-clastic succession from the northern to central Appalachians. Geological Society of America, Abstracts with Programs 36 (5), 376.Google Scholar
Wynn, T. C. & Read, J. F. 2007. Carbon–oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: a complex response to climate-driven fourth-order glacio-eustasy. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 254–72.CrossRefGoogle Scholar
Zych, W. 1927. Old-Red Podolski. Prace Polskiego Instytutu Geologicznego 2, 165.Google Scholar